RUS  ENG
Полная версия
СЕМИНАРЫ

Общегородской семинар по математической физике им. В. И. Смирнова
9 марта 2026 г. 16:30, г. Санкт-Петербург, онлайн-конференция zoom

Лекция имени О.А. Ладыженской (Совместное заседание Cеминара по математической физике им. В. И. Смирнова и Санкт-Петербургского математического общества)

Direct and inverse scattering for the continuum Calogero-Moser equation.

R. L. Frank

Mathematisches Institut, Ludwig-Maximilians Universität München

Аннотация: The CCM equation (also known as Calogero–Moser derivative nonlinear Schrödinger equation) is a nonlinear dispersive equation in 1+1 dimensions that is completely integrable. The corresponding Lax operator is a first order operator in the Hardy space on the real line. We develop a spectral theory of this operator, building Jost solutions, proving absence of singularly continuous spectrum and introducing scattering coefficients. We also prove trace formulas of Birman-Krein and Faddeev-Zakharov type. Finally, we propose an inverse scattering scheme for the solution of the CCM equation.
The talk does not assume any previous knowledge of the CCM equation. It is based on joint work with Larry Read.


© МИАН, 2026