RUS  ENG
Полная версия
СЕМИНАРЫ

Общегородской семинар по математической физике им. В. И. Смирнова
16 февраля 2026 г. 16:45, г. Санкт-Петербург, онлайн-конференция zoom


Another look at Boojums in a Liquid Crystal Model

I. Shafrir

Department of Mathematics, Technion — Israel Institute of Technology

Аннотация: Several authors (Alama, Bronsard, Golovaty, Mironescu) have recently studied the minimizers $\{u_\varepsilon\}$ of the energy $ E_\varepsilon(u) = E^{g,\alpha}_\varepsilon(u)$, given by
\begin{equation} \label{eq:1} E_\varepsilon(u) = \frac{1}{2} \int_\Omega \left( |\nabla u|^2 + \frac{1}{2\varepsilon^2}(1 - |u|^2)^2 \right) \, dx + \frac{1}{2\varepsilon^s} \int_{\partial\Omega} {\widetilde W}(u,g) \, ds \end{equation}
over $H^1(\Omega, \mathbb{C})$, where
\begin{equation} \label{eq:2} {\widetilde W}(u,g) = \frac{1}{2}(|u|^2 - 1)^2 + [(u, g) - \cos\alpha]^2 \end{equation}
with $\alpha \in (0, \pi/2)$ and $s \in (0,1)$, and where $g : \partial\Omega \to S^1$ is a smooth function of degree $D \ge 1$. The motivation comes from a thin-film limit of the Landau-de Gennes energy for a nematic liquid crystal. For $s < \frac{1}{2\big((\alpha/\pi)^2+(1-\alpha/\pi)^2\big)}$, it was shown that in the limit $\varepsilon \to 0$, boundary defects (called “boojums”) appear. \par However, the first term in \eqref{eq:2} is not part of the physical model, but rather added artificially to the energy for “technical reasons”.
There are two main goals of our work:
  • To show that the results obtained for the energy \eqref{eq:1} remain valid for the energy derived from the physical model, namely with $W(u,g) = [(u, g) - \cos\alpha]^2$, rather than $ {\widetilde W}(u,g)$ as defined in \eqref{eq:2}.
  • To obtain more precise information on the minimizers $\{u_\varepsilon\}$ as $\varepsilon \to 0$ in the "boojums regime"; e.g., to show that $|u_\varepsilon| \to 1$ uniformly on $\bar\Omega$.
This is a joint work with Dmitry Golovaty.


© МИАН, 2026