RUS  ENG
Полная версия
СЕМИНАРЫ

Семинар по аналитической теории дифференциальных уравнений
30 октября 2019 г. 13:00, г. Москва, МИАН, комн. 440 (ул. Губкина, 8)


Ряды Пюизё, алгебраические инварианты и интегрируемость полиномиальных динамических систем на плоскости

М. В. Демина

Аннотация: Доклад посвящен проблеме нахождения необходимых и достаточных условий интегрируемости по Дарбу и Лиувиллю для полиномиальных динамических систем на плоскости. Первые интегралы, являющиеся функциями Лиувилля, важны с прикладной точки зрения, поскольку они не абстрактны, а представляют собой конечные суперпозиции алгебраических функций, квадратур и экспоненциальных функций. При исследовании интегрируемости по Лиувиллю ключевую роль играют инвариантные алгебраические кривые соответствующей динамической системы. Наибольшая трудность при классификации неприводимых инвариантных алгебраических кривых связана с отсутствием априорной информации о допустимых степенях искомых кривых. В настоящее время проблему поиска верхней оценки для степеней неприводимых инвариантных алгебраических кривых называют проблемой Пуанкаре. Проблема Пуанкаре решена при определенных ограничениях, накладываемых на инвариантные алгебраические кривые и характер особых точек рассматриваемой динамической системы. К сожалению, для многих динамических систем, имеющих практические приложения, эти ограничения не выполняются. Планируется детально рассмотреть метод рядов Пюизё, позволяющий решать проблему Пуанкаре для широких классов полиномиальных динамических систем на плоскости.


© МИАН, 2026