RUS  ENG
Полная версия
СЕМИНАРЫ

Узлы и теория представлений
13 ноября 2018 г. 18:30, г. Москва, ГЗ МГУ, ауд. 14-03


Cluster variables on a braid

Seokbeom Yoon

Аннотация: Given a braid presentation $D$ of a hyperbolic knot, Hikami and Inoue considered equations arising from a sequence of cluster mutations determined by $D$. They showed that any solution of these equations determines a boundary-parabolic $PSL(2;\mathbb{C})$-representation of the knot group. They also conjectured the existence of solution corresponding to the geometric representation. In this talk we will show that a boundary-parabolic representation $\rho$ arises from a solution if and only if the length of $D$ modulo 2 equals the obstruction to lifting $\rho$ to a boundary-parabolic $PSL(2;\mathbb{C})$-representation. In particular, the Hikami-Inoue conjecture holds if and only if the length of $D$ is odd. This work is joint with Jinseok Cho and Christian Zickert.

Язык доклада: английский


© МИАН, 2026