RUS  ENG
Full version
SEMINARS

Seminar on Modern Problems of Complex Analysis (Sadullaev Seminar)
December 20, 2018 12:00, Tashkent, National University of Uzbekistan, Room A304 (Department of Mathematics)


The entrance time for circle homeomorphisms with break points

J. J. Karimov

National University of Uzbekistan named after M. Ulugbek, Tashkent

Abstract: We consider the circle homeomorphism $f\in {{C}^{2+\varepsilon }}({{S}^{1}}\backslash \{b\})$, $\varepsilon > 0$, with one break point $b$ and irrational rotation number $\rho ={{\rho }_{f}}=\frac{\sqrt{5}-1}{2}$. Let ${{q}_{n}}$ be the first return time. We fix arbitrary point ${{z}_{0}}\in {{S}^{1}}$. We denote by ${{J}_{n}}({{z}_{0}})$ the $n$-th renormalization interval of ${{z}_{0}}$. Let $\bar{E}_{n}^{(1)}(x)$ be the normalized entrance time function. The distribution function of random variable $\bar{E}_{n}^{(1)}(x)$ to Lebesgue measure $l$ denote by $\Phi _{n}^{(1)}(t)$. We prove that $\Phi _{n}^{(1)}(t)\to \Phi (t)$, $n\to \infty$ for all $t\in {{\mathbb{R}}^{1}}$ and $\Phi_{n}^{(1)}(t)$ is singular on $[0,1]$ w.r.t. Lebesgue measure $l$.


© Steklov Math. Inst. of RAS, 2026