RUS  ENG
Full version
SEMINARS

Steklov Mathematical Institute Seminar
April 18, 2002, Moscow, Steklov Mathematical Institute of RAS, Conference Hall (8 Gubkina)


Boundary control of processes described by hyperbolic equations

V. A. Il'in

Abstract: The question is studied of the existence of a minimal time interval $T_0$ and a boundary control at one endpoint $x=0$ or boundary controls at the two endpoints $x=0$ and $x=l$ which during the time $T_0$ transform the process described by the equation $k(x)[k(x)u_x(x,t)]_x-u_{tt}(x,t)=0$ (and, in particular, by the wave equation in the case $k(x)=1$), or the process described by the telegraph equation $u_{tt}(x,t)-u_{xx}(x,t)+C^2u(x,t)=0$, from an arbitrarily given initial state $\{u(x,t)=\phi(x),u_t(x,t)=\psi(x)\}$ to an arbitrarily given final state $\{u(x,T)=\phi_1(x)$, $u_t(x,T)=\psi_1(x)\}$.
All the desired boundary controls are produced in explicit analytic form.


© Steklov Math. Inst. of RAS, 2026