RUS  ENG
Полная версия
ВИДЕОТЕКА

Теория римановых поверхностей: методы и приложения
12 ноября 2024 г. 11:15, г. Сочи, МЦ Сириус


Braid monodromy for a trinomial algebraic equation

S. Tanabé

Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region



Аннотация: In this talk, we establish a braid monodromy representation of functions satisfying an algebraic equation containing three terms (trinomial equation). We follow global analytic continuation of the roots to a trinomial algebraic equation that are expressed by Mellin-Barnes integral representations. We depict braids that arise from the monodromy around all branching points. The global braid monodromy is described in terms of rational twists of strands that yield a classical Artin braid representation of algebraic functions. As a corollary, we get a precise description of the Galois group of a trinomial algebraic equation.

Язык доклада: английский


© МИАН, 2026