RUS  ENG
Полная версия
ВИДЕОТЕКА

Конструктивные методы теории римановых поверхностей и приложения
13 ноября 2023 г. 15:00, г.о. Сириус, Университет Сириус


Moduli spaces of n-punctured rational curves and their compactifications

G. Yu. Panina

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences



Аннотация: An Alexander self-dual complex gives rise to a compactification of $M_{0,n}$, called ASD compactification, which is a smooth algebraic variety. ASD compactifications include (but are not exhausted by) the polygon spaces, or the moduli spaces of flexible polygons. We present an explicit description of the Chow rings of ASD compactifications. We study the analogs of Kontsevich’s tautological bundles, compute their Chern classes, compute top intersections of the Chern classes, and derive a recursion for the intersection numbers. (Joint work with Ilya Nekrasov)

Язык доклада: английский


© МИАН, 2026