RUS  ENG
Полная версия
ВИДЕОТЕКА

Дни комбинаторики и геометрии II
16 апреля 2020 г. 16:20, Онлайн-конференция


Growth in Chevalley groups and Zaremba's conjecture

И. Д. Шкредов


https://youtu.be/MQdFczp6tPE

Аннотация: Given a Chevalley group $\mathbf G(q)$ and a parabolic subgroup $P \subset \mathbf G(q)$, we prove that for any set $A$ there is a certain growth of $A$ relatively to $P$, namely, either $AP$ or $PA$ is much larger than $A$. Also, we study a question about intersection of $A^n$ with parabolic subgroups $P$ for large $n$. We apply our method to obtain some results on a modular form of Zaremba's conjecture from the theory of continued fractions and make the first step towards Hensley's conjecture about some Cantor sets with Hausdorff dimension greater than $1/2$.


© МИАН, 2026