RUS  ENG
Полная версия
ВИДЕОТЕКА

Dynamics in Siberia - 2019
25 февраля 2019 г. 15:50, Новосибирск, Институт математики им. С.Л.Соболева СО РАН, конференц-зал

Sections

Solving triangular Schlesinger systems via periods of meromorphic differentials

Р. Р. Гонцов

Аннотация: We study the Schlesinger system of PDEs for $N$ matrices of size $p\times p$ in the case when they are triangular and the eigenvalues of each matrix form an arithmetic progression with a rational difference $q$, the same for all matrices. We show that such a system possesses a family of solutions expressed via periods of meromorphic differentials on the Riemann surfaces of superelliptic curves. As an application to the $2\times2$-case, explicit solutions of Painleve VI equations and Garnier systems are obtained.

Язык доклада: английский


© МИАН, 2026