|
|
| ВИДЕОТЕКА |
|
|
|||
|
Решётки и упаковки шаров в многомерных пространствах. Лекция 1 В. А. Клепцын |
|||
|
Аннотация: Как плотнее всего расположить непересекающиеся одинаковые круги на плоскости? Ответ известен — разместив их центры в вершинах треугольной решётки. В трёхмерном пространстве ответ хоть и считается известным («пирамида ядер»), но до сих пор не доказан. Достаточно часто в этой или в похожих задачах (скажем, в задаче о контактном числе) ответом (или предполагаемым ответом) оказывается расположение шаров в вершинах, образующих решётку. Поэтому исследование решёток в многомерных пространствах оказывается очень естественным шагом — и приводит к исключительно красивой теории. Программа курса: 1. Решётки в многомерных пространствах, «сильная дырявость» кубической решётки. Характеристики решётки: контактное число, плотность упаковки. Связь контактного числа с передачей информации по зашумлённому каналу. 2. Конкретные примеры: пирамида ядер в 3. Свойства решёток: целость, чётность, унимодулярность. Двойственные решётки, самодвойственность. Примеры: решётки 4. Коды, их свойства. Порождающая матрица, проверочная матрица. Решётки, получающиеся из кодов, связь свойств. Код Хэмминга, пополненный 5. Корни, классификация решёток, порождённых корнями. Код Голея и решётка Лича. 6. Производящий многочлен кода, его поведение при переходе к двойственному коду. Теорема о делимости на 8 размерности дважды чётного самодвойственного кода. Немного теории представлений: производящий многочлен как многочлен от стандартных. 7. Тета-функция чётной решётки, переход к двойственной решётке. Модулярные формы, модулярность тета-функции чётной унимодулярной решётки. Теорема о делимости на 8 размерности чётной унимодулярной решётки. 8. Ещё немного о модулярных формах и связи с комплексным анализом: функция Вейерштрасса, модулярные инварианты, вложение эллиптической кривой в |
|||