|
|
| ВИДЕОТЕКА |
|
|
|||
|
Sharp Pitt inequality and logarithmic uncertainty principle for Dunkl transform in D. V. Gorbachev, V. I. Ivanov, S. Yu. Tikhonov |
|||
|
Аннотация: Let $$ \widehat{f}(y)=(2\pi)^{-n/2}\int_{\mathbb{R}^{d}}f(x)e^{-i(x, y)}\,dx. $$ W. Beckner [N449:Bec] proved the Pitt inequality for the Fourier transform \begin{equation}\label{N449:eq1} \bigl\||y|^{-\beta}\widehat{f}(y)\bigr\|_{2}\le C(\beta)\bigl\||x|^{\beta}f(x)\bigr\|_{2},\qquad f\in S(\mathbb{R}^{d}),\quad 0<\beta<\frac d2\mspace{2mu}, \end{equation} with sharp constant $$ C(\beta)=2^{-\beta}\,\frac{\Gamma(\frac{1}{2}(\frac{d}{2}-\beta))}{\Gamma(\frac{1}{2}(\frac{d}{2}+\beta))}\mspace{2mu}. $$ Noting that $\||y|^{-\beta}\widehat{f}(y)\|_{2}= (2\pi)^{-\beta} \| |(-\Delta)^{\beta/2}f| \|_{2}$, Pitt's inequality can be viewed as a Hardy–Rellich inequality; see the papers by D. Yafaev [N449:Yaf] and S. Eilertsen [N449:Eil] for alternative proofs and extensions of \eqref{N449:eq1}. For The proof of \eqref{N449:eq1} in [N449:Bec] is based on an equivalent integral realization as a Stein-Weiss fractional integral on \begin{equation}\label{N449:eq2} L^{2}(\mathbb{R}^{d})=\sum_{n=0}^{\infty}\oplus \mathfrak{R}_{n}^{d}, \end{equation} where Following [N449:Yaf] and using similar decomposition of the space Let Let $$ v_{k}(x)=\prod_{a\in R_{+}}|(a,x)|^{2k(a)} $$ be the Dunkl weight, $$ c_{k}^{-1}=\int_{\mathbb{R}^{d}}e^{-|x|^{2}/2}v_{k}(x)\,dx $$ is the Macdonald–Mehta–Selberg integral. Let $$ \|f\|_{2,d\mu_{k}}=\biggl(\int_{\mathbb{R}^{d}}|f(x)|^{2}\,d\mu_{k}(x)\biggr)^{1/2}. $$ Introduced by C. F. Dunkl, a family of differential–difference operators (Dunkl's operators) associated with $$ D_{j}f(x)=\frac{\partial f(x)}{\partial x_{j}}+ \sum_{a\in R_{+}}k(a)(a,e_{j})\,\frac{f(x)-f(\sigma_{a}x)}{(a,x)}\mspace{2mu},\qquad j=1,\dots,d. $$ The Dunkl kernel $$ D_{j}f(x)=iy_{j}f(x),\quad j=1,\dots,d,\qquad f(0)=1. $$ Let us define the Dunkl transforms as follows $$ \mathcal{F}_{k}(f)(y)=\int_{\mathbb{R}^{d}}f(x)\overline{e_{k}(x,y)}\,d\mu_{k}(x), \qquad \mathcal{F}_{k}^{-1}(f)(x)=\mathcal{F}_{k}(f)(-x), $$ where Our goal is to study Pitt's inequality for the Dunkl transform \begin{equation}\label{N449:eq3} \||y|^{-\beta}\mathcal{F}_{k}(f)(y)\|_{2,d\mu_{k}}\le C(\beta,k)\||x|^{\beta}f(x)\|_{2,d\mu_{k}},\quad f\in S(\mathbb{R}^{d}), \end{equation} with the sharp constant Let us first recall some known results on Pitt's inequality for the Hankel transform. Let $$ b_{\lambda}=\biggl(\int_{0}^{\infty}e^{-t^{2}/2}t^{2\lambda+1}\,dt\biggr)^{-1}= \frac{1}{2^{\lambda}\Gamma(\lambda+1)} $$ and The Hankel transform is defined by $$ \mathcal{H}_{\lambda}(f)(\rho)=\int_{\mathbb{R}_{+}}f(r)j_{\lambda}(\rho r)\,d\nu_{\lambda}(r). $$ Note that $\mathcal{H}_{\lambda}^{-1}=\mathcal{H}_{\lambda}$. Pitt's inequality for the Hankel transform is written as \begin{equation}\label{N449:eq4} \|\rho^{-\beta}\mathcal{H}_{\lambda}(f)(\rho)\|_{2,d\nu_\lambda}\le c(\beta,\lambda)\|r^{\beta}f(r)\|_{2,d\nu_\lambda},\qquad f\in S(\mathbb{R}_{+}), \end{equation} where L. De Carli [N449:Car] proved that Let \begin{equation}\label{N449:eq5} 0\le \beta<\lambda_{k}+1 \end{equation} is necessary for Note that for the one-dimensional Dunkl weight $$ v_{\lambda}(t)=|t|^{2\lambda+1}, \qquad d\mu_{\lambda}(t)=\frac{v_{\lambda}(t)\,dt}{2^{\lambda+1}\Gamma(\lambda+1)}, \qquad \lambda\ge -\frac12\mspace{2mu}, $$ and the corresponding Dunkl transform $$ \mathcal{F}_{\lambda}(f)(s)= \int_{\mathbb{R}}f(t)\overline{e_{\lambda}(st)}\,|t|^{2\lambda+1}\,d\mu_{\lambda}(t),\qquad e_{\lambda}(t)=j_{\lambda}(t)-ij_{\lambda}'(t), $$ F. Soltani [N449:Sol1] proved Pitt's inequality that can be equivalently written as \begin{equation}\label{N449:eq6} \||s|^{-\beta}\mathcal{F}_{\lambda}(f)(s)\|_{2,d\mu_\lambda}\le \max \left\{c(\beta,\lambda),c(\beta,\lambda+1)\right\}\||t|^{\beta}f(t)\|_{2,d\mu_\lambda} \end{equation} for Finally, we remark that Pitt's inequality in Let Let us denote by If \begin{equation}\label{N449:eq7} L^{2}(\mathbb{S}^{d-1},d\omega_{k})=\sum_{n=0}^{\infty}\oplus \mathfrak{H}_{n}^{d}(v_{k}). \end{equation} Using \eqref{N449:eq7} and the following Funk-Hecke formula for \begin{equation*} \int_{\S^{d-1}}Y(y')\overline{e_{k}(x,y')}\,d\omega_{k}(y')= \frac{(-i)^{n}\Gamma(\lambda_{k}+1)}{2^{n}\Gamma(n+\lambda_{k}+1)}\,Y(x')r^{n} j_{n+\lambda_{k}}(r),\qquad x=rx', \end{equation*} similarly to \eqref{N449:eq2} we have the direct sum decomposition of \begin{equation*} L^{2}(\mathbb{R}^{d},d\mu_{k})=\sum_{n=0}^{\infty}\oplus \mathfrak{R}_{n}^{d}(v_{k}),\qquad \mathfrak{R}_{n}^{d}(v_{k})=\mathfrak{R}_{0}^{d}\otimes \mathfrak{H}_{n}^{d}(v_{k}), \end{equation*} and that the space The next result provides a sharp constant in the Pitt inequality for the Dunkl transform \eqref{N449:eq3}. \begin{etheorem}\label{N449:t2} Let $$ C(\beta,k)=2^{-\beta}\,\frac{\Gamma(\frac{1}{2}(\lambda_{k}+1-\beta))}{\Gamma(\frac{1}{2}(\lambda_{k}+1+\beta))}. $$ Sharpness of this inequality can be seen by considering radial functions. \end{etheorem} W. Beckner in [N449:Bec] proved the logarithmic uncertainty principle for the Fourier transform using Pitt's inequality \eqref{N449:eq1}: if $$ \int_{\mathbb{R}^{d}}\ln(|x|)|f(x)|^{2}\,dx+ \int_{\mathbb{R}^{d}}\ln(|y|)|\widehat{f}(y)|^{2}\,dy\ge \biggl(\psi \biggl(\frac{d}{4}\biggr)+\ln 2\biggr)\int_{\mathbb{R}^{d}}|f(x)|^{2}\,dx, $$ where For the Hankel transform the logarithmic uncertainty principle reads as follows (see [N449:Omr]): if \begin{align*} &\int_{\mathbb{R}_+}\ln(t)|f(t)|^{2}t^{2\lambda+1}\,dt+\int_{\mathbb{R}_+} \ln(s)|\mathcal{H}_{\lambda}(f)(s)|^{2}s^{2\lambda+1}\,ds \\ &\qquad \ge \biggl(\psi \biggl(\frac{\lambda+1}{2}\biggr)+\ln 2\biggr)\int_{\mathbb{R}_+}|f(t)|^{2}t^{2\lambda+1}\,dt. \end{align*} For the one-dimensional Dunkl transform of functions \begin{align*} &\int_{\mathbb{R}}\ln(|t|)|f(t)|^{2}|t|^{2\lambda+1}\,dt+ \int_{\mathbb{R}}\ln(|s|)|\mathcal{F}_{\lambda}(f)(s)|^{2}|s|^{2\lambda+1}\,ds \\ &\qquad \ge \biggl(\psi \biggl(\frac{\lambda+1}{2}\biggr) +\ln 2\biggr)\int_{\mathbb{R}}|f(t)|^{2}|t|^{2\lambda+1}\,dt. \end{align*} Using Pitt's inequality \eqref{N449:eq3} we obtain the logarithmic uncertainty principle for the multi-dimensional Dunkl transform. \begin{etheorem}\label{N449:t3} Let \begin{align*} &\int_{\mathbb{R}^{d}}\ln(|x|)|f(x)|^{2}\,d\mu_{k}(x) +\int_{\mathbb{R}^{d}}\ln(|y|)|\mathcal{F}_{k}(f)(y)|^{2}\,d\mu_{k}(y) \\ &\qquad \ge \biggl(\psi \biggl(\frac{\lambda_{k}+1}{2}\biggr)+\ln 2\biggr)\int_{\mathbb{R}^{d}}|f(x)|^{2}\,d\mu_{k}(x). \end{align*} \end{etheorem} The work was supported by grants RFBR № 13-01-00043, № 13-01-00045, Ministry of education and science of Russian Federation № 5414{\selectlanguage{russian}ГЗ}, № 1.1333.2014{\selectlanguage{russian}К}, Dmitry Zimin's Dynasty Foundation, MTM 2011-27637, 2014 SGR 289. Язык доклада: английский Список литературы
|
|||