RUS  ENG
Полная версия
СЕМИНАРЫ

Современные проблемы теории чисел
5 марта 2015 г. 12:45, г. Москва, МИАН, комн. 530 (ул. Губкина, 8)


"Reducible polynomials of bounded height"

А. Дубицкас

Department of Mathematical Computer Science, Vilnius University

Аннотация: We obtain an asymptotic formula for the number of reducible integer polynomials of degree $d$ and of height at most $T$ as $T \to \infty$. For each $d \geq 3$ the main term turns out to be of the form $c_d T^d$, where the constant $c_d$ is given in terms of some infinite Dirichlet series involving volumes of symmetric convex bodies in $R^d$. Earlier results in this direction were given by van der Waerden (1934), Polya and Szego, Chela (1963), Dorge (1965) and Kuba (2009).

Язык доклада: английский


© МИАН, 2026