|
|
| VIDEO LIBRARY |
|
|
|||
|
Trigonometric Convexity for the Multidimensional Indicator after Ivanov A. J. Mkrtchyanab a Institute of Mathematics and Computer Science, Siberian Federal University, Krasnoyarsk b Institute of Mathematics, National Academy of Sciences of Armenia, Yerevan |
|||
|
Abstract: The concept of indicator is well-known for analytic functions in one complex variable. Multidimensional indicator after Ivanov is a generalization of that concept for analytic functions in several complex variables. We state the trigonometric convexity for n-dimensional indicator after Ivanov [1]. Definition 1. Denote by \begin{equation*} \Delta_{\alpha_j}=\left\lbrace z_j\in\mathbb{C}\setminus\lbrace 0\rbrace\colon \left|\arg\left(z_j\right)\right|<\alpha_j\right\rbrace. \end{equation*} Definition 2. Recall that a function \begin{equation*} \left|f\left(z_1,\dots,z_n\right)\right|\leq k_{\varepsilon}e^{(h_1+\varepsilon)\left|z_1\right|+\dots+\left(h_n+\varepsilon\right)\left|z_n\right|},\quad \text{ for all } z_j\in \Delta_j,\; 1\leq j\leq n. \end{equation*} In definition 2 we tacitly assume that Definition 3. Denote by Definition 4. Namely, Ivanov introduced the following set: \begin{align*} T_{f}\left(\vec \theta\right)=\{& \vec \nu\in \mathbb R^n: \ln{\left|f\left(\vec re^{i\vec \theta}\right)\right|}\leq \nu_1 r_1+...+\nu_nr_n+C_{\vec \nu,\vec \theta}, \text{ for all }\vec r\in \mathbb R^n_+ \}, \end{align*} here Theorem. Let a function \begin{align*} \left(A^{l_1}_1, \dots,A^{l_n}_n\right) \in \overline T_f\left({l_1}\alpha_1, \dots,{l_n}\alpha_n\right), \end{align*} where \begin{equation*} \left(C_1,\dots,C_n\right)\in \overline T_f\left(\theta_1,\dots,\theta_n\right), \end{equation*} where the constants \begin{align*} C_j\sin\left(2\alpha_j\right)=A^+_j\sin\left(\theta_j+\alpha_j\right)+A^-_j\sin\left(\alpha_j-\theta_j\right), \;\; j=1,...,n. \end{align*} Remark. Theorem is sharp: that is, there exists a function This is a joint work with Armen Vagharshakyan. References [1] A. Mkrtchyan, A. Vagharshakyan, Trigonometric convexity for the multidimensional indicator after Ivanov. arXiv:2205.02585 (2022). |
|||