|
|
| VIDEO LIBRARY |
|
À.A.Karatsuba's 80th Birthday Conference in Number Theory and Applications
|
|||
|
|
|||
|
Multiplicites of zeros of A. Ivić Serbian Academy of Sciences and Arts, Beograd |
|||
|
Abstract: Let $$ F(T,\Delta)\,:=\,\max_{t\in[T,\, T+\Delta]} |\zeta({\textstyle\frac12}+it)| \qquad 0 < \Delta\,=\,\Delta(T) \le 1. $$ By the complex integration technique, a new, explicit bound for $$ m(\beta+i\gamma)\,\le\,4\log\log\gamma + 20(1-\beta)^{3/2}\log \gamma. $$ [1] A. Ivić, On the multiplicity of zeros of the zeta-function. Bulletin CXVIII de l'Académie Serbe des Sciences et des Arts – 1999, Classe des Sciences mathématiques et naturelles, Sciences mathématiques. ¹. 24. P. 119–131. [2] A.A. Karatsuba, On lower bounds for the Riemann zeta-function. Dokl. Math. 63:1 (2001). P. 9 – 10 (translation from: Dokl. Akad. Nauk. 376:1 (2001). P. 15 – 16). Language: English |
|||