|
|
| VIDEO LIBRARY |
|
International conference on Function Spaces and Approximation Theory dedicated to the 110th anniversary of S. M. Nikol'skii
|
|||
|
|
|||
|
A weighted Hardy-type inequality for A. Senouci Ibnou Khaldoun University, Algeria |
|||
|
Abstract: Let $$ \|f\|_{L_{p,u}(B_r)} = \biggl( \int_{\Omega} \vert f(x) \vert^p u(x)\, dx \biggr)^{\frac{1}{p}}<\infty, $$ and by Theorem. Let \begin{equation} \int_{B_r}u^{\frac{1}{1-p}}(x)\,dx=\infty \qquad \text{for some} \quad r>0 \label{N345:x1} \end{equation} and \begin{equation} V(r):=\int^{\infty}_{r}v(\rho)\rho^{-np}\,d\rho<\infty \qquad \text{for all} \quad r>0. \label{N345:x2} \end{equation} Consider the set of all Lebesgue measurable functions \begin{equation} |f(x)|\leq C_{1}u^{\frac{1}{1-p}}(x)\|f\|_{L_{_{p,u}}(B_{(|x|).})} \label{N345:x3} \end{equation} for almost all \begin{equation}\|Hf\|_{L_{_{p,v}}(0,\infty)} \leq C_{2}\|f\|_{L_{p,w}(\mathbb{R}^{n})} \label{N345:x4} \end{equation} where $$ w(x)=u(x) V(|x|),\qquad x\in\mathbb{R}^{n}, $$ and $$ C_{2}=v_{n}^{-1}pC_{1}^{1-p}. $$ If, in addition, \begin{equation} \int_{B_{r_{_{2}}}\setminus B_{r_{_{1}}}}u^{\frac{1}{1-p}}(x)\,dx<\infty\qquad \text{for all} \quad 0<r_{_{1}}<r_{_{2}}<\infty, \label{N345:x5} \end{equation} and \begin{equation} \int^{1}_{0}\exp\biggl(-C^{p}_{1}\int_{B_{1}\setminus B_{|x|}} u^{\frac{1}{1-p}}(y)\,dy\biggr) v(r)r^{-np}dr<\infty, \label{N345:x6} \end{equation} then the constant Joint work with Professor V. I. Burenkov and N. Azzouz. Language: English |
|||