|
|
| VIDEO LIBRARY |
|
International conference on Function Spaces and Approximation Theory dedicated to the 110th anniversary of S. M. Nikol'skii
|
|||
|
|
|||
|
Norm convolution inequalities in E. D. Nursultanova, S. Yu. Tikhonovb, N. T. Tleukhanovac a Kazakhstan Branch of Lomonosov Moscow State University b Centre de Recerca Matemàtica c L. N. Gumilev Eurasian National University |
|||
|
Abstract: Let $$ (Af)(x)=(K*f)(x)=\int_{{\mathbb R}} K(x-y) f(y) dy, \qquad K\in L_{\text{loc}}. $$ Let – – – – Now we define the sets $\mathfrak{L}_{d}, \mathfrak{U}_{d}, \mathfrak{V}_{d}$ as follows: \begin{align*} \mathfrak{L}_d&=\biggl\{E=\bigcup_{k\in w}(e+kd): e\in M_1, \, w\in W_1\biggr\}, \\ \mathfrak{U}_d&= \biggl\{E= \bigcup_{k\in w}(e_k+kd): e_k\in M_2, \, w\in W_2, \, |e_k|=|e_j|, \, k,j\in w \biggr\}, \\ \mathfrak{V}_{d}&= \biggl\{E=\bigcup_{x\in e}(x+w(x)d): e\in M_2, \,w(x)\in W_2, \, |w(x)|=|w(y)|, \, x,y\in e\biggr\}, \end{align*} where Theorem. Let $$ \sup\limits_{E\in \mathfrak{U}_{d}}\frac{1}{|E|^{1/p-1/q}}\int_{E}|K(x)|\,dx\leq D $$ or $$ \sup\limits_{E\in \mathfrak{V}_{d}}\frac{1}{|E|^{1/p-1/q}}\int_{E}|K(x)|\,dx\leq D, $$ then the operator $$ \|A\|_{L_p\rightarrow L_q}\leq C(p,q) D, $$ where Theorem. Let $$ \sup_{\substack{E\in \mathfrak{L}_d\\ |E|\leq B}}\frac{1}{|E|^{1/p-1/q}}\biggl|\int_{E}K(x)\,dx\biggr|\leq C(B)<\infty, $$ then $$ \sup_{E\in \mathfrak{L}_d}\frac{1}{|E|^{1/p-1/q}}\biggl|\int_{E}K(x)\,dx\biggr|\leq C(p,q)\|A\|_{L_p\rightarrow L_q}. $$ Corollary. Let $$ \mathcal{K}(x)= \frac{e^{i|x|^a}}{|x|^b}\mspace{2mu}, $$ where $$ \max(q, p')>\frac{a}{\lambda-b}>0, $$ then the operator Language: English References |
|||