|
|
| VIDEO LIBRARY |
|
International conference on Function Spaces and Approximation Theory dedicated to the 110th anniversary of S. M. Nikol'skii
|
|||
|
|
|||
|
Moduli of the supporting convexity and the supporting smoothness G. Ivanov |
|||
|
Abstract: In our talk we introduce the moduli of the supporting convexity and the supporting smoothness of a Banach space, which characterize the deviation of the unit sphere from an arbitrary supporting hyperplane. Let Let $$ \delta_X(\varepsilon) = \inf \biggl\{ 1 - \frac{\|x + y\|}{2}:\ \|x\| = \|y\| =1,\, \|x -y\| \geqslant \varepsilon\biggr\} $$ and $$ \rho_X(\tau) = \sup \biggl\{\frac{\|x + y\|}{2} + \frac{\|x - y\|}{2} - 1 : \|x\| = 1, \,\|y\| = \tau \biggr\}. $$ The functions We say that Define the modulus of local supporting convexity as $$ \lambda^{-}_{X}(r) = \inf \{\lambda \in \mathbb{R}: \|x\| = \|y\|=1,\, y \urcorner x,\, \|x+ry - \lambda x\| = 1 \}. $$ Define the modulus of local supporting smoothness as $$ \lambda^{+}_{X}(r) = \sup \{\lambda \in \mathbb{R}: \|x\| = \|y\|=1,\, y \urcorner x,\, \|x+ry - \lambda x\| = 1 \}. $$ We show that the modulus of supporting smoothness and the modulus of smoothness are equivalent at zero, the modulus of supporting convexity is equivalent at zero to the modulus of convexity. \begin{etheorem} For any \begin{etheorem}\label{N197:IvanovGM_conf_nik_110_1} For any We prove a Day–Nordlander type result for these moduli. The Day–Nordlander theorem (see [N197:Day-Nord]) asserts that $\delta_X(\varepsilon) \leqslant \delta_H(\varepsilon)$ for \begin{etheorem} Let $$ \lambda_X^{-}(r) \leqslant \lambda_{H}^{-}(r) = 1 - \sqrt{1 - r^2}= \lambda_{H}^{+}(r) \leqslant \lambda_X^{+}(r) \qquad \forall r \in [0,1]. $$ If at least one of these inequalities turns into equality, then In the paper [N197:banas1] J. Banaś defined and studied some new modulus of smoothness. Namely, he defined $$ \delta_X^{+}(\varepsilon) = \sup \biggl\{ 1 - \frac{\|x + y\|}{2}: \|x\|=\|y\| =1,\, \|x -y\| \leqslant \varepsilon \biggr\}, \qquad \varepsilon\in [0,2]. $$ The function In the papers [N197:banas1], [N197:banas2], [N197:banas1990convexity], [N197:banas1997functions] several interesting results concerning this modulus were obtained. Particulary, in [N197:banas1], J. Banaś proved that a space is uniformly smooth iff $\frac{\delta_X^{+}(\varepsilon)}{\varepsilon} \to 0$ as \begin{etheorem} Let \begin{equation*} \delta_X^{+}(2r) \leqslant \lambda^{+}_{X}(r) \leq 2\delta_X^{+}(3r) \qquad \forall r \in \left[0, \frac{2}{3}\right]. \end{equation*} \end{etheorem} Language: English References
|
|||