|
|
| VIDEO LIBRARY |
|
Conference in memory of A. A. Karatsuba on number theory and applications, 2015
|
|||
|
|
|||
|
Generalized Estermann's ternary problem for noninteger powers with almost equal summands P. Z. Rakhmonov M. V. Lomonosov Moscow State University |
|||
|
Abstract: In the talk, we will discuss an asymptotic formula that generalizes Estermann's ternary problem for noninteger powers with almost equal summands. We will obtain an asymptotic formula for the number of representations of a sufficiently large positive integer Let $$ c\,>\,\frac{4}{3}+\mathcal{L}^{-0.3}, \qquad \|c\|\,\ge\,3c\bigl(2^{[c]+1}-1\bigr)\frac{\ln{\mathcal{L}}}{\mathcal{L}}. $$ Let $$ p_{1}+p_{2}+\bigl[n^{c}\bigr]\,=\,N,\quad \left| p_{i}-\frac{N}{3}\right|\,\le\,H, \quad i=1,2,\quad \left|\bigl[n^c\bigr]-\frac{N}{3}\right|\,\le\,H $$ in primes $$ I(N,H)\,=\,\frac{18}{3^{\frac{1}{c}}c} \cdot\frac{H^{2}}{N^{1-\frac{1}{c}}\mathcal{L}^2}+O\left(\frac{H^{2}}{N^{1-\frac{1}{c}}\mathcal{L}^3}\right). $$ |
|||