RUS  ENG
Полная версия
ПЕРСОНАЛИИ

Жуков Алексей Евгеньевич

Публикации в базе данных Math-Net.Ru

  1. Исследование излучения микродискового лазера, монолитно интегрированного с оптическим волноводом

    Физика и техника полупроводников, 59:7 (2025),  388–391
  2. Микродисковые лазеры с вынесенной контактной площадкой мостиковой конструкции, сформированные жидкостным химическим травлением

    Физика и техника полупроводников, 59:1 (2025),  37–42
  3. Высокочастотная модуляция микрокольцевого лазера с квантовыми точками при повышенной температуре

    Письма в ЖТФ, 51:20 (2025),  32–35
  4. Монолитная интеграция микродисковых лазеров на основе InGaAs/GaAs квантовых точек с просветляемыми оптическими волноводами

    Письма в ЖТФ, 51:19 (2025),  11–14
  5. Лазерная генерация в дисковых микроструктурах InGaN/GaN/AlGaN на кремнии

    Письма в ЖТФ, 51:11 (2025),  41–45
  6. Микродисковые лазеры на основе InGaAs/GaAs-квантовых точек, монолитно-интегрированные с волноводом

    Физика и техника полупроводников, 58:2 (2024),  107–113
  7. Зависимость длины волны генерации от оптических потерь в лазере на квантовых точках

    Письма в ЖТФ, 50:21 (2024),  57–60
  8. Исследование оптических свойств нановключений InP/InAsP/InP в кремнии

    Письма в ЖТФ, 50:5 (2024),  3–6
  9. Вклад связанных волноводов в сопротивление гетероструктуры мощных торцевых лазеров InGaAs/GaAs/AlGaAs

    Письма в ЖТФ, 50:2 (2024),  18–22
  10. Исследование высокотемпературной генерации микродисковых лазеров с оптически связанным волноводом

    Оптика и спектроскопия, 131:11 (2023),  1483–1485
  11. Влияние пассивации поверхности цилиндрических мезаструктур на основе GaAs на их оптические свойства

    Оптика и спектроскопия, 131:8 (2023),  1112–1117
  12. Широкополосное излучение суперлюминесцентных диодов на основе многослойных структур с квантовыми яма-точками InGaAs/GaAs

    Физика и техника полупроводников, 57:4 (2023),  301–307
  13. Влияние давления мышьяка при заращивании квантовых точек InAs тонким низкотемпературным слоем GaAs на их оптические свойства

    Физика и техника полупроводников, 57:4 (2023),  276–281
  14. Модель быстродействия волноводного фотодиода с квантовыми точками

    Физика и техника полупроводников, 57:3 (2023),  215–220
  15. Исследование $p$$i$$n$-фотодетектора с поглощающей средой на основе InGaAs/GaAs квантовых яма-точек

    Физика и техника полупроводников, 57:3 (2023),  202–206
  16. Кодирование информации с использованием двухуровневой генерации в лазере на квантовых точках

    Письма в ЖТФ, 49:5 (2023),  18–21
  17. Температурные зависимости излучательного и безызлучательного времени жизни носителей в квантовых яма-точках InGaAs

    Физика и техника полупроводников, 56:10 (2022),  993–996
  18. Влияние состава волноводного слоя на излучательные параметры лазерных гетероструктур InGaAlAs/InP спектрального диапазона 1550 нм

    Физика и техника полупроводников, 56:9 (2022),  933–939
  19. Внутренние потери в инжекционных лазерах на основе квантовых яма-точек

    Физика и техника полупроводников, 56:9 (2022),  922–927
  20. Конструкции блокирующих слоев для подавления паразитной рекомбинации в мощных диодных лазерах с GaAs волноводом

    Физика и техника полупроводников, 56:3 (2022),  363–369
  21. Бимодальность в спектрах электролюминесценции InGaAs квантовых яма-точек

    Физика и техника полупроводников, 56:1 (2022),  97–100
  22. Температурные характеристики кольцевых лазеров с активной областью на основе InAs/InGaAs/GaAs-квантовых точек оптического диапазона 1.3 $\mu$m

    Письма в ЖТФ, 48:18 (2022),  36–40
  23. Двухуровневая лазерная генерация в инжекционных микродисках на основе квантовых точек InAs/InGaAs

    Письма в ЖТФ, 48:12 (2022),  40–43
  24. Быстродействующие фотодетекторы на основе квантовых ям-точек InGaAs/GaAs

    Письма в ЖТФ, 48:4 (2022),  32–35
  25. Сверхвысокое модовое усиление в инжекционных полосковых лазерах и микролазерах на основе квантовых точек InGaAs/GaAs

    Квантовая электроника, 52:7 (2022),  593–596
  26. Увеличение эффективности тандема полупроводниковый лазер-оптический усилитель на основе самоорганизующихся 8s квантовых точек

    Физика и техника полупроводников, 55:12 (2021),  1223–1228
  27. Мощность насыщения оптического усилителя на основе самоорганизующихся квантовых точек

    Физика и техника полупроводников, 55:9 (2021),  820–825
  28. Влияние конструкции активной области и волновода на характеристики лазеров на основе структур квантовые ямы-точки InGaAs/GaAs

    Физика и техника полупроводников, 55:3 (2021),  256–263
  29. Учет подложки при расчете электрического сопротивления микродисковых лазеров

    Физика и техника полупроводников, 55:2 (2021),  195–200
  30. Увеличение оптической мощности микродисковых лазеров InGaAs/GaAs, перенесенных на кремниевую подложку методом термокомпрессии

    Письма в ЖТФ, 47:20 (2021),  3–6
  31. Исследование чувствительности микродискового лазера к изменению показателя преломления окружающей среды

    Письма в ЖТФ, 47:19 (2021),  30–33
  32. Энергопотребление при высокочастотной модуляции неохлаждаемого InGaAs/GaAs/AlGaAs-микродискового лазера

    Письма в ЖТФ, 47:13 (2021),  28–31
  33. Спектроскопия возбуждения фотолюминесценции массивов квантовых точек InAs/InGaAs/GaAs в температурном диапазоне 20–300 K

    Оптика и спектроскопия, 128:1 (2020),  110–117
  34. Особенности роста наноструктур для терагерцовых квантово-каскадных лазеров и их физические свойства

    Физика и техника полупроводников, 54:9 (2020),  902–905
  35. Предельная температура генерации микродисковых лазеров

    Физика и техника полупроводников, 54:6 (2020),  570–574
  36. Паразитная рекомбинация в лазере с асимметричными барьерными слоями

    Физика и техника полупроводников, 54:3 (2020),  296–303
  37. Сравнительный анализ инжекционных микродисковых лазеров на основе квантовых ям InGaAsN и квантовых точек InAs/InGaAs

    Физика и техника полупроводников, 54:2 (2020),  212–216
  38. Быстродействующие фотодетекторы оптического диапазона 950–1100 nm на основе In$_{0.4}$Ga$_{0.6}$As/GaAs-наноструктур квантовая яма-точки

    Письма в ЖТФ, 46:24 (2020),  11–14
  39. Лазерная генерация перенесенных на кремний инжекционных микродисков с квантовыми точками InAs/InGaAs/GaAs

    Письма в ЖТФ, 46:16 (2020),  3–6
  40. Микрооптопара на базе микродискового лазера и фотодетектора с активной областью на основе квантовых ям-точек

    Письма в ЖТФ, 46:13 (2020),  7–10
  41. Влияние саморазогрева на модуляционные характеристики микродискового лазера

    Письма в ЖТФ, 46:11 (2020),  3–7
  42. Экспериментальное и теоретическое исследование спектров фоточувствительности структур с квантовыми ямами-точками In$_{0.4}$Ga$_{0.6}$As оптического диапазона 900–1050 nm

    Письма в ЖТФ, 46:5 (2020),  3–6
  43. Инжекционные лазеры InGaAlP/GaAs оранжевого оптического диапазона ($\sim$600 нм)

    Физика и техника полупроводников, 53:12 (2019),  1708–1713
  44. Фотолюминесценция с временным разрешением наноструктур InGaAs различной квантовой размерности

    Физика и техника полупроводников, 53:11 (2019),  1520–1526
  45. Оценка вклада поверхностной рекомбинации в микродисковых лазерах с помощью высокочастотной модуляции

    Физика и техника полупроводников, 53:8 (2019),  1122–1127
  46. Использование микродисковых лазеров с квантовыми точками InAs/InGaAs для биодетектирования

    Письма в ЖТФ, 45:23 (2019),  10–13
  47. Особенности вольт-амперной характеристики микродисковых лазеров на основе квантовых ям-точек InGaAs/GaAs

    Письма в ЖТФ, 45:19 (2019),  37–39
  48. Потребление энергии для высокочастотного переключения микродискового лазера с квантовыми точками

    Письма в ЖТФ, 45:16 (2019),  49–51
  49. Температурная зависимость характеристик полупроводниковых лазеров с узкими квантовыми ямами спектрального диапазона 1.55 $\mu$m на основе бесфосфорных гетероструктур

    Письма в ЖТФ, 45:11 (2019),  20–23
  50. Лазеры на основе квантовых яма-точек, излучающие в оптических диапазонах 980 и 1080 nm

    Письма в ЖТФ, 45:4 (2019),  42–45
  51. Нарушение локальной электронейтральности в квантовой яме полупроводникового лазера с асимметричными барьерными слоями

    Физика и техника полупроводников, 52:12 (2018),  1518–1526
  52. Снижение внутренних потерь и теплового сопротивления в лазерных диодах со связанными волноводами

    Физика и техника полупроводников, 52:11 (2018),  1351–1356
  53. Влияние конструкции эпитаксиальной структуры и параметров роста на характеристики метаморфных лазеров оптического диапазона 1.46 мкм на основе квантовых точек на положках GaAs

    Физика и техника полупроводников, 52:10 (2018),  1191–1196
  54. Многослойные InGaAs-гетероструктуры “квантовая яма-точки” в фотопреобразователях на основе GaAs

    Физика и техника полупроводников, 52:10 (2018),  1131–1136
  55. Подавление волноводной рекомбинации за счет использования парных асимметричных барьеров в лазерных гетероструктурах

    Физика и техника полупроводников, 52:2 (2018),  260–265
  56. Бимодальность в массивах гибридных квантово-размерных гетероструктур In$_{0.4}$Ga$_{0.6}$As, выращенных на подложках GaAs

    Физика и техника полупроводников, 52:1 (2018),  57–62
  57. Мощностные характеристики и температурная зависимость угловой расходимости излучения лазеров с приповерхностной активной областью

    Письма в ЖТФ, 44:15 (2018),  46–51
  58. Когерентный рост нитевидных нанокристаллов InP/InAsP/InP на поверхности Si(111) при молекулярно-пучковой эпитаксии

    Письма в ЖТФ, 44:3 (2018),  55–61
  59. Высокая характеристическая температура лазера на квантовых точках InAs/GaAs/InGaAsP с длиной волны излучения около 1.5 мкм, синтезированного на подложке InP

    Физика и техника полупроводников, 51:10 (2017),  1382–1386
  60. Квантовые точки InAs, выращенные в метаморфной матрице In$_{0.25}$Ga$_{0.75}$As методом МОС-гидридной эпитаксии

    Физика и техника полупроводников, 51:5 (2017),  704–710
  61. Энергетический спектр и тепловые свойства терагерцового квантово-каскадного лазера на основе резонансно-фононного дизайна

    Физика и техника полупроводников, 51:4 (2017),  540–546
  62. Оптические свойства гибридных наноструктур “квантовая яма–точки”, полученных методом МОС-гидридной эпитаксии

    Физика и техника полупроводников, 51:3 (2017),  372–377
  63. Исследование структурных и оптических свойств слоев GaP(N), синтезированных методом молекулярно-пучковой эпитаксии на подложкаx Si(100) 4$^\circ$

    Физика и техника полупроводников, 51:2 (2017),  276–280
  64. Особенности волноводной рекомбинации в лазерных структурах с асимметричными барьерными слоями

    Физика и техника полупроводников, 51:2 (2017),  263–268
  65. Генерация терагерцового излучения в многослойных квантово-каскадных гетероструктурах

    Письма в ЖТФ, 43:7 (2017),  86–94
  66. Лазерные характеристики инжекционного микродиска с квантовыми точками и эффективность вывода излучения в свободное пространство

    Физика и техника полупроводников, 50:10 (2016),  1425–1428
  67. Изготовление терагерцового квантово-каскадного лазера с двойным металлическим волноводом на основе многослойных гетероструктур GaAs/AlGaAs

    Физика и техника полупроводников, 50:10 (2016),  1395–1400
  68. Теория мощностных характеристик лазеров на квантовой яме с асимметричными барьерными слоями: учет асимметрии заполнения электронных и дырочных состояний

    Физика и техника полупроводников, 50:10 (2016),  1380–1386
  69. Оптические свойства гибридных квантово-размерных структур с высоким коэффициентом поглощения

    Физика и техника полупроводников, 50:9 (2016),  1202–1207
  70. Многослойные гетероструктуры для квантово-каскадных лазеров терагерцового диапазона

    Физика и техника полупроводников, 50:5 (2016),  674–678
  71. Инжекционные микродисковые лазеры спектрального диапазона 1.27 мкм

    Физика и техника полупроводников, 50:3 (2016),  393–397
  72. Выжигание пространственных дыр и стабильность спектра генерации многочастотного лазера с квантовыми точками

    Физика и техника полупроводников, 49:11 (2015),  1546–1552
  73. Влияние бимодальности массива квантовых точек на оптические свойства и пороговые характеристики лазеров на их основе

    Физика и техника полупроводников, 49:8 (2015),  1115–1119
  74. Оптимизация асимметричных барьерных слоев в лазерных гетероструктурах InAlGaAs/AlGaAs на подложках GaAs

    Физика и техника полупроводников, 49:7 (2015),  956–960
  75. Тепловое сопротивление дисковых микролазеров сверхмалого диаметра

    Физика и техника полупроводников, 49:5 (2015),  688–692
  76. Влияние сульфидной пассивации на люминесценцию микродисков с квантовыми ямами и квантовыми точками

    Письма в ЖТФ, 41:13 (2015),  86–94
  77. Влияние асимметричных барьерных слоев в волноводной области на мощностные характеристики лазеров на квантовой яме

    Письма в ЖТФ, 41:9 (2015),  61–70
  78. Лазерная генерация в микродисках сверхмалого диаметра

    Физика и техника полупроводников, 48:12 (2014),  1666–1670
  79. Многослойные массивы квантовых точек высокой объемной плотности

    Физика и техника полупроводников, 48:11 (2014),  1487–1491
  80. Лазеры на основе квантовых точек и микрорезонаторов с модами шепчущей галереи

    Квантовая электроника, 44:3 (2014),  189–200
  81. Спектральная зависимость фактора уширения линии в лазерах на квантовых точках

    Физика и техника полупроводников, 47:12 (2013),  1681–1686
  82. Влияние динамики носителей заряда и температуры на двухуровневую генерацию в полупроводниковых лазерах на квантовых точках

    Физика и техника полупроводников, 47:10 (2013),  1406–1413
  83. Лазерная генерация при комнатной температуре в микрокольцевых резонаторах с активной областью на основе квантовых точек

    Физика и техника полупроводников, 47:10 (2013),  1396–1399
  84. Оптимизация конструкции и режима работы лазера на квантовых точках для снижения тепловых потерь при переключении

    Физика и техника полупроводников, 47:8 (2013),  1102–1108
  85. Высокочастотные электрические свойства вертикально-излучающего лазера с интегрированным электрооптическим модулятором

    Физика и техника полупроводников, 47:5 (2013),  684–689
  86. Оптическая анизотропия квантовых точек InGaAs

    Физика и техника полупроводников, 47:1 (2013),  87–91
  87. Лазерная генерация в перенесенных на подложку кремния микродисковых резонаторах с квантовыми точками InAs/GaAs

    Письма в ЖТФ, 39:18 (2013),  70–77
  88. Влияние модулированного легирования активной области на одновременную генерацию через основное и возбужденное состояния в лазерах на квантовых точках

    Физика и техника полупроводников, 46:10 (2012),  1353–1356
  89. Приборные характеристики длинноволновых лазеров на основе самоорганизующихся квантовых точек. Обзор

    Физика и техника полупроводников, 46:10 (2012),  1249–1273
  90. Высокотемпературная лазерная генерация в микрокольцевом лазере с активной областью на основе квантовых точек InAs/InGaAs

    Физика и техника полупроводников, 46:8 (2012),  1063–1066
  91. Влияние асимметричных барьерных слоев в волноводной области на температурные характеристики лазеров на квантовой яме

    Физика и техника полупроводников, 46:8 (2012),  1049–1053
  92. Влияние неоднородного уширения и преднамеренно внесенной неупорядоченности на ширину спектра генерации лазеров на квантовых точках

    Физика и техника полупроводников, 46:5 (2012),  701–707
  93. Особенности одновременной генерации через основное и возбужденное состояния в лазерах на квантовых точках

    Физика и техника полупроводников, 46:2 (2012),  241–246
  94. Влияние возбужденного оптического перехода на фактор уширения спектральной линии лазеров на квантовых точках

    Физика и техника полупроводников, 46:2 (2012),  235–240
  95. Экспериментальное исследование умножителей частоты на полупроводниковых сверхрешетках в терагерцовом диапазоне частот

    Физика и техника полупроводников, 46:1 (2012),  125–129
  96. Поляризационная зависимость резонансов Фано в примесной фотопроводимости квантовых ям, легированных мелкими донорами

    Физика твердого тела, 53:6 (2011),  1188–1197
  97. Влияние нелинейного насыщения усиления на предельную частоту модуляции в лазерах на основе самоорганизующихся квантовых точек

    Физика и техника полупроводников, 45:7 (2011),  996–1000
  98. Влияние параметров AlGaAs–(AlGa)$_x$O$_y$ пьедестала на характеристики микродискового лазера с активной областью на основе InAs/InGaAs-квантовых точек

    Физика и техника полупроводников, 45:7 (2011),  992–995
  99. Полупроводниковый лазер с асимметричными барьерными слоями: высокая температурная стабильность

    Физика и техника полупроводников, 45:4 (2011),  540–546
  100. Ширина спектра лазерной генерации в лазерах на квантовых точках: аналитический подход

    Физика и техника полупроводников, 45:2 (2011),  245–250
  101. Разогрев носителей заряда в квантовых ямах при оптической и токовой инжекции электронно-дырочных пар

    Физика и техника полупроводников, 44:11 (2010),  1451–1454
  102. Излучение и фотопроводимость в квантовых ямах GaAs/AlGaAs $n$-типа в терагерцовой области спектра: роль резонансных состояний

    Физика и техника полупроводников, 44:11 (2010),  1443–1446
  103. Пространственно-одномодовый полупроводниковый лазер на InAs/InGaAs-квантовых точках с дифракционным фильтром оптических мод

    Физика и техника полупроводников, 44:10 (2010),  1401–1406
  104. Анализ механизмов эмиссии носителей в $p$$i$$n$-структурах с квантовыми точками In(Ga)As

    Физика и техника полупроводников, 44:10 (2010),  1352–1356
  105. Оптическая анизотропия InAs квантовых точек

    Письма в ЖТФ, 36:23 (2010),  24–30
  106. Стимулированное излучение квантовых точек при оптической накачке

    Квантовая электроника, 40:7 (2010),  579–582
  107. Полупроводниковые лазеры на основе квантовых точек для систем оптической связи

    Квантовая электроника, 38:5 (2008),  409–423
  108. Суперлюминесцентные диоды спектрального диапазона 1100–1230 нм на основе InAs/AlGaAs/GaAs-гетероструктуры с квантовыми точками

    Квантовая электроника, 36:6 (2006),  527–531
  109. Вертикально-излучающие приборы на основе структур с квантовыми точками

    УФН, 171:8 (2001),  855–857
  110. Напряженные субмонослойные гетероструктуры и гетероструктуры с квантовыми точками

    УФН, 165:2 (1995),  224–225
  111. Выращивание квантовых кластеров GaAs$-$AlAs на ориентированных не по (100) фасетированных поверхностях GaAs методом молекулярно-пучковой эпитаксии

    Физика и техника полупроводников, 26:10 (1992),  1715–1722

  112. Памяти Жореса Ивановича Алферова

    УФН, 189:8 (2019),  899–900
  113. Жорес Иванович Алферов (к 80-летию со дня рождения)

    УФН, 180:3 (2010),  333–334


© МИАН, 2026