RUS  ENG
Полная версия
ПЕРСОНАЛИИ

Лозовану Дмитрий Дмитриевич

Публикации в базе данных Math-Net.Ru

  1. Pure and mixed stationary equilibria for dynamic positional games on graphs

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2025, № 1,  94–106
  2. An optimality criterion for disjoint bilinear programming and its application to the problem with an acute-angled polytope for a disjoint subset

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2024, № 1-2,  109–136
  3. On the existence of stationary Nash equilibria for mean payoff games on graphs

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2023, № 2,  41–51
  4. Equilibria in pure strategies for a two-player zero-sum average stochastic positional game

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2022, № 1,  75–82
  5. On the existence and determining stationary Nash equilibria for switching controller stochastic games

    Contributions to Game Theory and Management, 14 (2021),  290–301
  6. New algorithms for finding the limiting and differential matrices in Markov chains

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2020, № 1,  75–88
  7. On the existence of stationary Nash equilibria in average stochastic games with finite state and action spaces

    Contributions to Game Theory and Management, 13 (2020),  304–323
  8. Pure stationary nash equilibria for discounted stochastic positional games

    Contributions to Game Theory and Management, 12 (2019),  246–260
  9. An approach for determining the optimal strategies for an average Markov decision problem with finite state and action spaces

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2018, № 1,  34–49
  10. Nash equilibria in mixed stationary strategies for $m$-player mean payoff games on networks

    Contributions to Game Theory and Management, 11 (2018),  103–112
  11. Stationary Nash equilibria for two-player average stochastic games with finite state and action spaces

    Contributions to Game Theory and Management, 10 (2017),  175–184
  12. Stationary Nash equilibria for average stochastic games with finite state and action spaces

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2016, № 2,  71–92
  13. On Nash equilibria for stochastic games and determining the optimal strategies of the players

    Contributions to Game Theory and Management, 8 (2015),  187–198
  14. Algorithms for solving stochastic discrete optimal control problems on networks

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2014, № 3,  80–88
  15. Determining the optimal paths in networks with rated transition time costs

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2014, № 1,  14–22
  16. Nash equilibria conditions for stochastic positional games

    Contributions to Game Theory and Management, 7 (2014),  201–213
  17. Algorithms for determining the state-time probabilities and the limit matrix in Markov chains

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2011, № 1,  66–82
  18. An approach for determining the matrix of limiting state probabilities in discrete Markov processes

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2010, № 1,  77–91
  19. Dynamic programming algorithms for solving stochastic discrete control problems

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2009, № 2,  73–90
  20. Discrete Optimal Control Problem with Varying Time of States Transactions of Dynamical System and Algorithm for its solving

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2008, № 2,  46–53
  21. Parametrical Approach for Bilinear Programming and its Application for solving Integer and Combinatorial Optimization Problems

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2007, № 3,  91–101
  22. Minimum Cost Multicommodity Flows in Dynamic Networks and Algorithms for their Finding

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2007, № 1,  107–119
  23. A Linear Parametrical Programming Approach for Studying and Solving Bilinear Programming Problem

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2006, № 3,  73–86
  24. Dynamic programming approach for solving discrete optimal control problem and its multicriterion version

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2006, № 1,  31–38
  25. Multiobjective Games and Determining Pareto-Nash Equilibria

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2005, № 3,  115–122
  26. Optimal multicommodity flows in dynamic networks and algorithms for their finding

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2005, № 1,  19–34
  27. The optimal flow in dynamic networks with nonlinear cost functions on edges

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2004, № 3,  10–16
  28. Discrete optimal control problems on networks and dynamic games with $\mathbf p$ players

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2004, № 2,  67–88
  29. Сетевые модели дискретного оптимального управления и динамические игры с $p$ игроками

    Дискрет. матем., 13:4 (2001),  126–143
  30. Задача о минимаксном пути в сети и алгоритм ее решения

    Дискрет. матем., 6:2 (1994),  138–144


© МИАН, 2026