RUS  ENG
Полная версия
ПЕРСОНАЛИИ

Рагуси Эрик

Публикации в базе данных Math-Net.Ru

  1. Rectangular Recurrence Relations in $\mathfrak{gl}_{n}$ and $\mathfrak{o}_{2n+1}$ Invariant Integrable Models

    SIGMA, 21 (2025), 078, 28 стр.
  2. The Higher-Rank Askey–Wilson Algebra and Its Braid Group Automorphisms

    SIGMA, 19 (2023), 077, 36 стр.
  3. Actions of the monodromy matrix elements onto $\mathfrak{gl}(m|n)$-invariant Bethe vectors

    J. Stat. Mech., 2020, 93104, 31 стр.
  4. On Abelianity Lines in Elliptic $W$-Algebras

    SIGMA, 16 (2020), 094, 18 стр.
  5. New symmetries of ${\mathfrak{gl}(N)}$-invariant Bethe vectors

    J. Stat. Mech., 2019 (2019), 44001, 24 стр.
  6. Векторы Бете в ортогональных интегрируемых моделях

    ТМФ, 201:2 (2019),  153–174
  7. Norm of Bethe vectors in models with $\mathfrak{gl}(m|n)$ symmetry

    Nuclear Phys. B, 926 (2018),  256–278
  8. Scalar products and norm of Bethe vectors for integrable models based on $U_q(\widehat{\mathfrak{gl}}_n)$

    SciPost Phys., 4 (2018),  6–30
  9. Bethe vectors for models based on the super-Yangian $Y(gl(m|n))$

    J. Integrab. Syst., 2 (2017),  1–31
  10. Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry 2. Determinant representation

    J. Phys. A, 50:3 (2017), 34004, 22 стр.
  11. Scalar products of Bethe vectors in the models with $\mathfrak{gl}(m|n)$ symmetry

    Nuclear Phys. B, 923 (2017),  277–311
  12. Токовое представление для дубля супер-янгиана $DY(\mathfrak{gl}(m|n))$ и векторы Бете

    УМН, 72:1(433) (2017),  37–106
  13. Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry. 1. Super-analog of Reshetikhin formula

    J. Phys. A, 49:45 (2016), 454005, 28 стр.
  14. Form factors of the monodromy matrix entries in gl(2|1)-invariant integrable models

    Nuclear Phys. B, 911 (2016),  902–927
  15. Multiple actions of the monodromy matrix in $\mathfrak{gl}(2|1)$-invariant integrable models

    SIGMA, 12 (2016), 099, 22 стр.
  16. Form factors of local operators in a one-dimensional two-component Bose gas

    J. Phys. A, 48:43 (2015), 435001, 21 стр.
  17. Zero modes method and form factors in quantum integrable models

    Nuclear Phys. B, 893 (2015),  459–481
  18. ${\rm GL}(3)$-Based Quantum Integrable Composite Models. II. Form Factors of Local Operators

    SIGMA, 11 (2015), 064, 18 стр.
  19. ${\rm GL}(3)$-Based Quantum Integrable Composite Models. I. Bethe Vectors

    SIGMA, 11 (2015), 063, 20 стр.
  20. Bethe vectors of quantum integrable models based on $U_q(\hat{\mathfrak{gl}}_N)$

    J. Phys. A, 47:10 (2014), 105202, 16 стр.
  21. The MacMahon Master Theorem for right quantum superalgebras and higher Sugawara operators for $\widehat{\mathfrak{gl}}_{m|n}$

    Mosc. Math. J., 14:1 (2014),  83–119
  22. Form factors in quantum integrable models with $GL(3)$-invariant $R$-matrix

    Nuclear Phys. B, 881 (2014),  343–368
  23. Детерминантные представления для формфакторов в квантовых интегрируемых моделях с $GL(3)$-инвариантной $R$-матрицей

    ТМФ, 181:3 (2014),  515–537
  24. Скалярные произведения в моделях с $GL(3)$ тригонометрической $R$-матрицей. Общий случай

    ТМФ, 180:1 (2014),  51–71
  25. Скалярные произведения в моделях с $GL(3)$ тригонометрической $R$-матрицей. Старший коэффициент

    ТМФ, 178:3 (2014),  363–389
  26. Построение $R$-матриц Темперли–Либа и обобщенные матрицы Адамара

    ТМФ, 178:2 (2014),  255–273
  27. Form factors in $SU(3)$-invariant integrable models

    J. Stat. Mech., 2013:4 (2013), 4033, 16 стр.
  28. Bethe vectors of $GL(3)$-invariant integrable models

    J. Stat. Mech., 2013:2 (2013), 2020, 24 стр.
  29. Bethe Vectors of Quantum Integrable Models with $\mathrm{GL}(3)$ Trigonometric $R$-Matrix

    SIGMA, 9 (2013), 058, 23 стр.
  30. Highest coefficient of scalar products in $SU(3)$-invariant integrable models

    J. Stat. Mech., 2012:9 (2012), 9003, 17 стр.
  31. The algebraic Bethe ansatz for scalar products in $SU(3)$-invariant integrable models

    J. Stat. Mech., 2012 (2012), 10017, 25 стр.
  32. Rational Calogero–Moser model: explicit form and $r$-matrix of the second Poisson structure

    SIGMA, 8 (2012), 079, 13 стр.
  33. Coordinate Bethe Ansatz for Spin $s$ XXX Model

    SIGMA, 7 (2011), 006, 13 стр.
  34. Universal Bethe Ansatz and Scalar Products of Bethe Vectors

    SIGMA, 6 (2010), 094, 22 стр.
  35. Янгианы и $\mathcal W$-алгебры

    ТМФ, 127:3 (2001),  356–366


© МИАН, 2026