RUS  ENG
Полная версия
ПЕРСОНАЛИИ

Налимов Михаил Юрьевич

Публикации в базе данных Math-Net.Ru

  1. Динамическое описание фазового перехода в сверхпроводящее состояние

    ТМФ, 221:2 (2024),  444–459
  2. Сходящаяся теория возмущений и предел сильной связи в квантовой электродинамике

    ТМФ, 216:3 (2023),  532–547
  3. Составные операторы стохастической модели A

    ТМФ, 216:3 (2023),  519–531
  4. Кинетические коэффициенты в формализме временны́х функций Грина при конечной температуре

    ТМФ, 213:3 (2022),  538–554
  5. Сходящаяся теория возмущений для исследования фазовых переходов

    ТМФ, 204:2 (2020),  226–241
  6. Кинетическая теория бозонного газа

    ТМФ, 200:3 (2019),  507–521
  7. Критическая динамика фазового перехода в сверхтекучее состояние

    ТМФ, 200:2 (2019),  361–377
  8. Исследование температурных функций Грина графеноподобных систем в полупространстве

    ТМФ, 190:3 (2017),  426–439
  9. Ренормгрупповое исследование сверхпроводящего фазового перехода: асимптотика высоких порядков разложений и результаты трехпетлевых расчетов

    ТМФ, 181:2 (2014),  374–386
  10. Температурные функции Грина в ферми-системах: сверхпроводящий фазовый переход

    ТМФ, 176:1 (2013),  89–97
  11. Влияние гидродинамических флуктуаций на фазовый переход в $E$- и $F$-моделях критичеcкой динамики

    ТМФ, 176:1 (2013),  69–78
  12. Микроскопическое обоснование стохастической F-модели критической динамики

    ТМФ, 175:3 (2013),  398–407
  13. Бозе-конденсация: критическая размерность вязкости, развитая турбулентность

    ТМФ, 169:1 (2011),  89–99
  14. Исследование асимптотик высоких порядков квантово-полевых разложений в теории двумерной развитой турбулентности

    ТМФ, 169:1 (2011),  79–88
  15. Борелевское пересуммирование $\varepsilon$-разложения динамического индекса $z$ модели A $\phi^4(O(n))$-теории

    ТМФ, 159:1 (2009),  96–108
  16. Семейство инстантонов модели Крейчнана с замороженным полем скорости

    ТМФ, 158:2 (2009),  200–213
  17. Асимптотика старших порядков теории возмущений: первая поправка к константам ренормировки $O(n)$-симметричной теории в $(4-\epsilon)$-разложении

    ТМФ, 143:2 (2005),  211–230
  18. Асимптотика старших порядков теории возмущений: скейлинговые функции $O(n)$-симметричной теории $\phi^4$ в $(4-\epsilon)$-разложении

    ТМФ, 129:3 (2001),  387–402
  19. Асимптотика старших порядков теории возмущений: константы ренормировки $O(n)$-симметричной теории $\phi^4$ в $(4-\epsilon)$-разложении

    ТМФ, 126:3 (2001),  409–426
  20. Ренормализационная группа в задаче о развитой турбулентности сжимаемой жидкости

    ТМФ, 110:3 (1997),  385–398
  21. Ренормгрупповое исследование корреляционных функций и составных операторов в модели стохастической магнитной гидродинамики

    ТМФ, 107:1 (1996),  142–154
  22. Расчет спектров развитой затухающей турбулентности в энергосодержащей и инерционной областях

    ТМФ, 106:3 (1996),  416–424
  23. Поправки на сжимаемость жидкости к спектрам развитой турбулентности

    ТМФ, 106:3 (1996),  375–389
  24. Ренормгрупповой подход к задаче о влиянии сжимаемости жидкости на спектральные свойства развитой турбулентности

    ТМФ, 104:2 (1995),  260–270
  25. Теория возмущений и голдстоуновские сингулярности в упорядоченной фазе $O_n$-симметричной теории $\mathbf \Phi^4$ в полупространстве

    ТМФ, 102:2 (1995),  223–236
  26. Принцип максимальной хаотичности в статистической теории развитой турбулентности. II. Изотропная затухающая турбулентность

    ТМФ, 96:1 (1993),  150–159
  27. Принцип максимальной хаотичности в статистической теории развитой турбулентности. I. Однородная изотропная турбулентность

    ТМФ, 91:2 (1992),  294–308
  28. Модифицированное критическое поведение в $\varphi^4(O_n)$-модели

    ТМФ, 91:1 (1992),  168–172
  29. Голдстоуновские сингулярности в $4-\varepsilon$-разложении теории $\Phi^4$

    ТМФ, 80:2 (1989),  212–225
  30. Регулярное разложение для расчета ренормгрупповых функций в теории с размерными константами взаимодействия

    ТМФ, 68:2 (1986),  210–224
  31. $1/N$-разложение: расчет аномальных размерностей и матриц смешивания в порядке $1/N$ для $N\times p$-матричной калибровочно-инвариантной $\sigma$-модели

    ТМФ, 58:2 (1984),  169–183
  32. $CP^{N-1}$-Модель: расчет аномальных размерностей и матриц смешивания в порядке $1/N$

    ТМФ, 56:1 (1983),  15–30
  33. Аналог размерной регуляризации для расчета ренормгрупповых функций в $1/n$-разложении при произвольной размерности пространства

    ТМФ, 55:2 (1983),  163–175


© МИАН, 2026