|
|
Публикации в базе данных Math-Net.Ru
-
Об одном методе решения смешанной краевой задачи для уравнения параболического типа с помощью операторов $\mathbb{AT}_{\lambda,j}$
Изв. вузов. Матем., 2024, № 2, 59–80
-
Об одном методе решения смешанной краевой задачи для уравнения гиперболического типа с помощью операторов $\mathbb{AT}_{\lambda,j}$
Изв. РАН. Сер. матем., 87:6 (2023), 121–149
-
О многочленах наилучшего приближения сегментных функций
Владикавк. матем. журн., 25:1 (2023), 105–111
-
Об одном методе решения смешанной краевой задачи для уравнения параболического типа с помощью модифицированных операторов синк-приближений
Ж. вычисл. матем. и матем. физ., 63:7 (2023), 1156–1176
-
О сходимости обобщений синк-аппроксимаций на классе Привалова–Чантурия
Сиб. журн. индустр. матем., 24:3 (2021), 122–137
-
О равномерном приближении интерполяционными многочленами Лагранжа по матрице узлов Якоби ${\mathcal L}_n^{(\alpha_n,\beta_n)}$ функций ограниченной вариации
Изв. РАН. Сер. матем., 84:6 (2020), 197–222
-
Принцип локализации на классе функций, интегрируемых по Риману, для процессов Лагранжа–Штурма–Лиувилля
Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 20:1 (2020), 51–63
-
Признак сходимости процессов Лагранжа–Штурма–Лиувилля в терминах одностороннего модуля изменения
Изв. вузов. Матем., 2018, № 8, 61–74
-
Равномерная сходимость процессов Лагранжа–Штурма–Лиувилля на одном функциональном классе
Уфимск. матем. журн., 10:2 (2018), 93–108
-
Сходимость процессов Лагранжа–Штурма–Лиувилля для непрерывных функций ограниченной вариации
Владикавк. матем. журн., 20:4 (2018), 76–91
-
Достаточное условие сходимости процессов Лагранжа–Штурма–Лиувилля в терминах одностороннего модуля непрерывности
Ж. вычисл. матем. и матем. физ., 58:11 (2018), 1780–1793
-
Необходимые и достаточные условия равномерной на отрезке синк-аппроксимации функций ограниченной вариации
Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 16:3 (2016), 288–298
-
Приближение непрерывных на отрезке функций с помощью линейных комбинаций синков
Изв. вузов. Матем., 2016, № 3, 72–81
-
О необходимых и достаточных условиях сходимости синк-аппроксимаций
Алгебра и анализ, 27:5 (2015), 170–194
-
О некоторых свойствах синк-аппроксимаций непрерывных на отрезке функций
Уфимск. матем. журн., 7:4 (2015), 116–132
-
Об одной обратной узловой задаче для оператора Штурма–Лиувилля
Уфимск. матем. журн., 5:4 (2013), 116–129
-
Об операторах интерполирования по решениям задачи Коши и многочленах Лагранжа–Якоби
Изв. РАН. Сер. матем., 75:6 (2011), 129–162
-
Дифференциальные свойства нулей собственных функций задачи Штурма–Лиувилля
Уфимск. матем. журн., 3:4 (2011), 133–143
-
О расходимости синк-приближений всюду на $(0,\pi)$
Алгебра и анализ, 22:4 (2010), 232–256
-
О расходимости интерполяционных процессов Лагранжа по собственным функциям задачи Штурма–Лиувилля
Изв. вузов. Матем., 2010, № 11, 74–85
-
Об асимптотике решений и узловых точек дифференциальных выражений Штурма–Лиувилля
Сиб. матем. журн., 51:3 (2010), 662–675
-
Обобщение теоремы отсчетов Уиттекера–Котельникова–Шеннона для непрерывных функций на
отрезке
Матем. сб., 200:11 (2009), 61–108
-
Критерий равномерной сходимости sinc-приближений на отрезке
Изв. вузов. Матем., 2008, № 6, 66–78
-
Критерии поточечной и равномерной сходимости синк-приближений непрерывных функций на отрезке
Матем. сб., 198:10 (2007), 141–158
-
Оценки функций Лебега и формула Неваи для $sinc$-приближений непрерывных функций на отрезке
Сиб. матем. журн., 48:5 (2007), 1155–1166
-
Об отсутствии устойчивости интерполирования по собственным функциям задачи Штурма–Лиувилля
Изв. вузов. Матем., 2000, № 9, 60–73
© , 2026