Специальность ВАК:
01.01.01 (вещественный, комплексный и функциональный анализ)
E-mail: ,
Ключевые слова: интерполяция функций,
дифференциальные уравнения,
ряды Фурье,
ортогональные многочлены,
синк-аппроксимация,
интерполяционные процессы,
операторы Лагранжа,
теорема отсчётов,
теория приближения функций.
Основные темы научной работы:
Приближение функций с помощью линейных операторов (ряды Фурье, интерполяционные операторы Лагранжа, синк-аппроксимация,). Приложение теории функций в математической физике и теории обыкновенных дифференциальных уравнений.
Основные публикации:
А. Ю. Трынин, “Об одном методе решения смешанной краевой задачи для уравнения параболического типа с помощью модифицированных операторов синк-приближений”, Ж. вычисл. матем. и матем. физ., 63:7 (2023), 1156–1176; Comput. Math. Math. Phys., 63:7 (2023), 1264–1284
А. Ю. Трынин, “Об операторах интерполирования по решениям задачи Коши и многочленах Лагранжа–Якоби”, Изв. РАН. Сер. матем., 75:6 (2011), 129–162; Izv. Math., 75:6 (2011), 1215–1248
А. Ю. Трынин, “Оценки функций Лебега и формула Неваи для $sinc$-приближений непрерывных функций на отрезке”, Сиб. матем. журн., 48:5 (2007), 1155–1166
А. Ю. Трынин, “Обобщение теоремы отсчетов Уиттекера–Котельникова–Шеннона для непрерывных функций на отрезке”, Матем. сб., 200:11 (2009), 61–108
А. Ю. Трынин, “О расходимости синк-приближений всюду на $(0,\pi)$”, Алгебра и анализ, 22:4 (2010), 232–256
А.Ю. ТРЫНИН, “ОБ ОДНОЙ ОБРАТНОЙ УЗЛОВОЙ ЗАДАЧЕ
ДЛЯ ОПЕРАТОРА ШТУРМА-ЛИУВИЛЛЯ”, Уфимский математический журнал., 5:3 (2013), 116-129
А. Ю. Трынин, “Об асимптотике решений и узловых точек дифференциальных выражений Штурма–Лиувилля”, Сиб. матем. журн., 51:3 (2010), 662–675; Siberian Math. J., 51:3 (2010), 525–536