RUS  ENG
Полная версия
ПЕРСОНАЛИИ

Бондарев А Д

Публикации в базе данных Math-Net.Ru

  1. Применение покрытий AlN для защиты поверхности гетероструктур системы AlGaAs/GaAs от взаимодействия с атмосферным кислородом

    Письма в ЖТФ, 46:6 (2020),  16–19
  2. Фазовый состав, морфология, оптические и электронные характеристики наноразмерных пленок AlN, выращенных на подложках GaAs(100) с разориентацией

    Физика и техника полупроводников, 53:11 (2019),  1584–1592
  3. Образование дефектов в структурах GaAs с непокрытой и покрытой пленкой AlN поверхностями при имплантации ионов азота и последующем отжиге

    Физика и техника полупроводников, 53:4 (2019),  437–440
  4. Топография поверхности и оптические характеристики тонких пленок AlN на подложке GaAs (100), полученных методом реактивного ионно-плазменного распыления

    Письма в ЖТФ, 45:5 (2019),  38–41
  5. Влияние концентрации кислорода в составе газовой плазмообразующей смеси на оптические и структурные свойства пленок нитрида алюминия

    Физика и техника полупроводников, 52:2 (2018),  196–200
  6. Особенности роста и структурно-спектроскопические исследования нанопрофилированных пленок AlN, выращенных на разориентированных подложках GaAs

    Физика и техника полупроводников, 50:9 (2016),  1283–1294
  7. Свойства нитрида алюминия, полученного методом реактивного ионно-плазменного распыления

    Физика и техника полупроводников, 49:10 (2015),  1429–1433
  8. Исследования наноразмерных пленок Al$_2$O$_3$, полученных на пористом кремнии методом ионно-плазменного распыления

    Физика и техника полупроводников, 49:7 (2015),  936–941
  9. Структура и оптические свойства тонких пленок Al$_2$O$_3$, полученных методом реактивного ионно-плазменного распыления на подложках GaAs(100)

    Физика и техника полупроводников, 48:11 (2014),  1564–1569
  10. К вопросу о температурной делокализации носителей заряда в квантово-размерных гетероструктурах GaAs/AlGaAs/InGaAs

    Физика и техника полупроводников, 48:10 (2014),  1377–1382
  11. Полупроводниковые лазеры (1020–1100 нм) с асимметричным расширенным одномодовым волноводом на основе гетероструктур AlGaAs/GaAs

    Физика и техника полупроводников, 47:8 (2013),  1082–1086
  12. Температурная делокализация носителей заряда в полупроводниковых лазерах ($\lambda$ = 1010–1070 нм)

    Физика и техника полупроводников, 46:9 (2012),  1230–1233
  13. Лазеры с сильнонапряженной квантовой ямой GaInAs с компенсирующими слоями GaAsP, излучающие на длине волны 1220 нм, выращенные методом МОС-гидридной эпитаксии на подложке GaAs

    Физика и техника полупроводников, 45:10 (2011),  1417–1421
  14. Лазеры с сильно напряженной квантовой ямой GaInAs с компенсирующими слоями GaAsP, излучающие на длине волны 1190 нм, выращенные методом МОС-гидридной эпитаксии на подложке GaAs

    Физика и техника полупроводников, 45:9 (2011),  1274–1278
  15. Температурная зависимость пороговой плотности тока и внешней дифференциальной квантовой эффективности в полупроводниковых лазерах ($\lambda$ = 900–920 нм)

    Физика и техника полупроводников, 44:10 (2010),  1417–1421
  16. Получение и исследование оптических и фотоэлектрических свойств гетероэпитаксиальных пленок титаната и галлата висмута

    Письма в ЖТФ, 11:12 (1985),  713–717


© МИАН, 2026