RUS  ENG
Полная версия
ПЕРСОНАЛИИ

Андреев Вячеслав Михайлович

Публикации в базе данных Math-Net.Ru

  1. Влияние типа подложки-носителя на резистивные и оптические свойства AlGaAs/GaInAs светоизлучающих инфракрасных диодов

    ЖТФ, 96:2 (2026),  330–335
  2. Увеличение эффективности ввода оптической мощности в AlGaAs/GaAs фотоэлектрических преобразователях лазерного излучения

    Физика и техника полупроводников, 59:4 (2025),  209–213
  3. Взаимосвязь конструкций и эффективности инфракрасных светоизлучающих диодов на основе квантово-размерных гетероструктур AlGaAs

    ЖТФ, 94:4 (2024),  632–637
  4. Мощный субнаносекундный модуль на основе $p$$i$$n$ AlGaAs/GaAs-фотодиодов

    Письма в ЖТФ, 50:19 (2024),  5–8
  5. Субнаносекундные AlGaAs/GaAs-фотодетекторы с брэгговским отражателем

    Письма в ЖТФ, 50:17 (2024),  38–41
  6. Исследование деградации параметров субнаносекундного фотоэлектрического модуля при термоциклировании

    Письма в ЖТФ, 50:6 (2024),  44–46
  7. Исследование технологии изготовления мощных ИК (850 nm) светодиодов, получаемых методом переноса AlGaAs–GaAs-гетероструктуры на подложку-носитель

    ЖТФ, 93:1 (2023),  170–174
  8. Архитектура мезы и эффективность InGaP/Ga(In)As/Ge солнечных элементов

    ЖТФ, 91:7 (2021),  1067–1074
  9. К 125-летию со дня рождения лауреата Нобелевской премии академика Николая Николаевича Семенова. Высокоэффективные фотоэлектрические модули с концентраторами солнечного излучения

    ЖТФ, 91:6 (2021),  915–921
  10. Высокоэффективные (EQE = 37.5%) инфракрасные (850 нм) светодиоды с брэгговским и зеркальным отражателями

    Физика и техника полупроводников, 55:12 (2021),  1218–1222
  11. Инфракрасные (850 нм) светодиоды с множественными квантовыми ямами InGaAs и “тыльным” отражателем

    Физика и техника полупроводников, 55:8 (2021),  699–703
  12. Влияние внутренних отражателей на эффективность инфракрасных (850 нм) светодиодов

    Физика и техника полупроводников, 55:7 (2021),  614–617
  13. Динамика влажности воздуха в концентраторном фотоэлектрическом модуле с устройством осушения

    Письма в ЖТФ, 47:4 (2021),  52–54
  14. Плазмохимическое и жидкостное травление в постростовой технологии каскадных солнечных элементов на основе гетероструктуры GaInP/GaInAs/Ge

    Письма в ЖТФ, 47:3 (2021),  14–17
  15. Разработка и исследование туннельных $p$$i$$n$-диодов GaAs/AlGaAs для многопереходных преобразователей мощного лазерного излучения

    Физика и техника полупроводников, 54:3 (2020),  285–291
  16. Исследование методов пассивации и защиты каскадных солнечных элементов

    Письма в ЖТФ, 46:19 (2020),  35–37
  17. Высокоэффективные фотоэлектрические модули с концентраторами солнечного излучения

    Письма в ЖТФ, 46:13 (2020),  24–26
  18. Система контроля точности слежения за Солнцем концентраторных фотоэнергоустановок

    Письма в ЖТФ, 46:11 (2020),  11–13
  19. Теплоотводящие электроизолирующие платы для фотоэлектрических преобразователей концентрированного солнечного излучения

    Письма в ЖТФ, 46:9 (2020),  29–31
  20. Увеличение фототока Ga(In)As-субэлемента в многопереходных солнечных элементах GaInP/Ga(In)As/Ge

    Письма в ЖТФ, 45:24 (2019),  41–43
  21. Разработка методов жидкостного травления разделительной меза-структуры при создании каскадных солнечных элементов

    Письма в ЖТФ, 45:24 (2019),  14–16
  22. Тритиевые источники электропитания на основе гетероструктур AlGaAs/GaAs

    Письма в ЖТФ, 45:23 (2019),  30–33
  23. Исследование формирования антиотражающего покрытия каскадных солнечных элементов

    Письма в ЖТФ, 45:20 (2019),  15–17
  24. Гибридные солнечные элементы с системой концентрации оптического излучения

    Письма в ЖТФ, 45:16 (2019),  52–54
  25. Исследование омических контактов мощных фотоэлектрических преобразователей

    Письма в ЖТФ, 45:1 (2019),  12–15
  26. Влияние структуры омических контактов на характеристики GaAs/AlGaAs фотоэлектрических преобразователей

    ЖТФ, 88:8 (2018),  1211–1215
  27. Фотоэлектрические AlGaAs/GaAs-преобразователи излучения тритиевых радиолюминесцентных ламп

    Физика и техника полупроводников, 52:13 (2018),  1647–1650
  28. Просветление поверхности субэлемента на основе германия в каскадных GaInP/GaAs/Ge-солнечных элементах

    Письма в ЖТФ, 44:22 (2018),  95–101
  29. Тепловые характеристики высокоэффективных фотоэлектрических преобразователей мощного лазерного излучения

    Письма в ЖТФ, 44:21 (2018),  105–110
  30. Высокоэффективные AlGaAs/GaAs фотоэлектрические преобразователи с торцевым вводом лазерного излучения

    Письма в ЖТФ, 44:17 (2018),  42–48
  31. Основные фотоэлектрические характеристики трехпереходных солнечных элементов InGaP/InGaAs/Ge в широком диапазоне температур (-197 $\le T\le$ +85$^\circ$C)

    Физика и техника полупроводников, 50:10 (2016),  1374–1379
  32. Фотоэлектрические преобразователи лазерного излучения ($\lambda$ = 1550 нм) на основе GaSb: метод получения и характеристики

    Физика и техника полупроводников, 50:10 (2016),  1358–1362
  33. Фотоэлектрический преобразователь лазерного излучения на основе гетероструктуры AlGaAs/GaAs

    Физика и техника полупроводников, 50:9 (2016),  1242–1246
  34. Фотоэлектрические преобразователи концентрированного солнечного излучения на основе InGaAsP(1.0 эВ)/InP-гетероструктур

    Физика и техника полупроводников, 49:5 (2015),  715–718
  35. Концентраторные модули нового поколения на основе каскадных солнечных элементов: конструкция, оптические и температурные свойства

    ЖТФ, 84:11 (2014),  72–79
  36. Темновые вольт-амперные характеристики трехпереходных солнечных элементов: связь с эффективностью и влияние пассивирующих обработок

    ЖТФ, 84:6 (2014),  92–97
  37. Влияние постростовых технологий на характеристики трехпереходных солнечных элементов InGaP/Ga(In)As/Ge

    Физика и техника полупроводников, 48:9 (2014),  1249–1253
  38. Фотоэлектрические модули с цилиндрическими световодами в системе вторичного концентрирования солнечного излучения

    ЖТФ, 83:9 (2013),  84–89
  39. Концентраторные фотоэлектрические модули со спектральным расщеплением света с солнечными элементами на основе структур AlGaAs/GaAs/GaSb и GaInP/InGaAs(P)

    ЖТФ, 83:7 (2013),  106–110
  40. Получение и исследование $p$$n$-структур с кристаллическими включениями в области пространственного заряда

    Физика и техника полупроводников, 47:12 (2013),  1677–1680
  41. Высокоэффективные фотоэлементы на основе GaSb

    Физика и техника полупроводников, 47:2 (2013),  273–279
  42. Оценка эффективности преобразования тонкопленочных однопереходных $a$-Si : H и тандема $\mu c$-Si:H + $a$-Si:H солнечных элементов из анализа экспериментальных темновых и нагрузочных I–V-характеристик

    Физика и техника полупроводников, 46:7 (2012),  952–959
  43. Высокоэффективный ($\eta$ = 39.6%, AM 1.5D) каскад фотопреобразователей в системе со спектральным расщеплением солнечного излучения

    Физика и техника полупроводников, 45:6 (2011),  810–815
  44. Оптимизация параметров солнечных модулей на основе линзовых концентраторов излучения и каскадных фотоэлектрических преобразователей

    ЖТФ, 80:2 (2010),  118–125
  45. Германиевые субэлементы для многопереходных фотоэлектрических преобразователей GaInP/GaInAs/Ge

    Физика и техника полупроводников, 44:11 (2010),  1568–1576
  46. Газовый термофотоэлектрический генератор на основе металлических эмиттеров и GaSb-элементов

    Физика и техника полупроводников, 44:9 (2010),  1284–1289
  47. Исследование диффузионных длин неосновных носителей заряда в фотоактивных слоях многопереходных солнечных элементов

    Физика и техника полупроводников, 44:8 (2010),  1118–1123
  48. Термофотоэлектрические генераторы на основе антимонида галлия

    Физика и техника полупроводников, 44:2 (2010),  270–277
  49. Высокоэффективные фотоэлементы на основе твердых растворов In$_{0.53}$Ga$_{0.47}$As с изовалентным легированием

    Физика и техника полупроводников, 44:2 (2010),  240–245


© МИАН, 2026