RUS  ENG
Полная версия
ПЕРСОНАЛИИ

Шамахов Виктор Валентинович

Публикации в базе данных Math-Net.Ru

  1. Буферные структуры GaAs/Si, полученные методом газофазной эпитаксии из металлоорганических соединений

    Письма в ЖТФ, 52:7 (2026),  48–52
  2. Быстродействующие токовые ключи на основе AlGaAs/GaAs-гетероструктур тиристоров с толстой $p$-базой (8 мкм)

    Физика и техника полупроводников, 59:10 (2025),  629–634
  3. Исследование влияния формы маски на пространственное распределение скорости роста слоев GaAs, полученных методом МОС-гидридной селективной эпитаксии

    Физика и техника полупроводников, 59:8 (2025),  452–457
  4. Мощные многомодовые полупроводниковые лазеры (λ = 976 нм) на основе асимметричных гетероструктур с расширенным волноводом и пониженной расходимостью излучения в перпендикулярной плоскости

    Квантовая электроника, 53:5 (2023),  374–378
  5. Лазерные диоды (850 нм) на основе асимметричной AlGaAs/GaAs-гетероструктуры с объемной активной областью для генерации мощных субнаносекундных оптических импульсов

    Квантовая электроника, 53:1 (2023),  1–5
  6. Мощные лазерные диоды на основе InGaAs(Р)/Al(In)GaAs(P)/GaAs-гетероструктур с низкими внутренними оптическими потерями

    Квантовая электроника, 52:12 (2022),  1152–1165
  7. Мощные непрерывные лазеры InGaAs/AlGaAs (1070 нм) с расширенным латеральным волноводом мезаполосковой конструкции

    Физика и техника полупроводников, 55:4 (2021),  344–348
  8. Исследование динамики выходной оптической мощности полупроводниковых лазеров (1070 nm) с маломодовым латеральным волноводом мезаполосковой конструкции при сверхвысоких токах накачки

    Письма в ЖТФ, 47:7 (2021),  42–45
  9. Оптическое поглощение в волноводе AlGaAs-гетероструктуры n-типа

    Квантовая электроника, 51:11 (2021),  987–991
  10. Ватт-амперные характеристики мощных импульсных полупроводниковых лазеров (1060 нм), работающих при повышенных (до 90 °С) температурах

    Квантовая электроника, 51:2 (2021),  129–132
  11. Одномодовые лазеры (1050 нм) мезаполосковой конструкции на основе гетероструктуры AlGaAs/GaAs со сверхузким волноводом

    Физика и техника полупроводников, 54:4 (2020),  414–419
  12. Излучательные характеристики мощных полупроводниковых лазеров (1060 нм) с узким мезаполосковым контактом на основе асимметричных гетероструктур AlGaAs/GaAs с широким волноводом

    Физика и техника полупроводников, 54:4 (2020),  408–413
  13. Исследование многомодовых полупроводниковых лазеров на основе гетероструктуры типа зарощенная меза

    Квантовая электроника, 49:12 (2019),  1172–1174
  14. AlGaAs/GaAs/InGaAs-лазеры со сверхузким волноводом

    Квантовая электроника, 49:7 (2019),  661–665
  15. Эпитаксиальные твердые растворы Al$_{x}$Ga$_{1-x}$As : Mg с различным типом проводимости

    Физика и техника полупроводников, 51:1 (2017),  124–132
  16. К вопросу о внутренних оптических потерях и токовых утечках в лазерных гетероструктурах на основе твердых растворов AlGaInAs/InP

    Физика и техника полупроводников, 50:9 (2016),  1247–1252
  17. Гетероструктуры Al$_x$Ga$_{1-x}$As/GaAs(100) с аномально высокой подвижностью носителей заряда

    Физика и техника полупроводников, 49:8 (2015),  1043–1049
  18. Исследование коэффициента поглощения в слоях гетероструктуры полупроводникового лазера

    Квантовая электроника, 45:7 (2015),  604–606
  19. Влияние параметров лазерного резонатора на насыщение ватт-амперных характеристик мощных импульсных лазеров

    Квантовая электроника, 45:7 (2015),  597–600
  20. К вопросу о температурной делокализации носителей заряда в квантово-размерных гетероструктурах GaAs/AlGaAs/InGaAs

    Физика и техника полупроводников, 48:10 (2014),  1377–1382
  21. Линейки лазерных диодов на основе гетероструктур AlGaAsP/GaAs, излучающие на длине волны 850 нм

    Физика и техника полупроводников, 48:3 (2014),  388–391
  22. Насыщение ватт-амперных характеристик мощных лазеров (λ = 1.0 – 1.1 мкм) в импульсном режиме генерации

    Квантовая электроника, 44:11 (2014),  993–996
  23. Характеристики лазерных диодов, излучающих на длине волны 850 нм, с различными способами компенсации внутренних механических напряжений в гетероструктуре AlGaAs(P)/GaAs

    Физика и техника полупроводников, 47:8 (2013),  1078–1081
  24. Полупроводниковые лазеры с внутренней селекцией излучения

    Физика и техника полупроводников, 47:1 (2013),  124–128
  25. Лазерные диоды, излучающие на длине волны 850 нм, на основе гетероструктур AlGaAsP/GaAs

    Физика и техника полупроводников, 46:10 (2012),  1344–1348
  26. Температурная зависимость пороговой плотности тока в полупроводниковых лазерах ($\lambda$ = 1050–1070 нм)

    Физика и техника полупроводников, 46:9 (2012),  1234–1238
  27. Температурная делокализация носителей заряда в полупроводниковых лазерах ($\lambda$ = 1010–1070 нм)

    Физика и техника полупроводников, 46:9 (2012),  1230–1233
  28. Лазеры с сильнонапряженной квантовой ямой GaInAs с компенсирующими слоями GaAsP, излучающие на длине волны 1220 нм, выращенные методом МОС-гидридной эпитаксии на подложке GaAs

    Физика и техника полупроводников, 45:10 (2011),  1417–1421
  29. Лазеры с сильно напряженной квантовой ямой GaInAs с компенсирующими слоями GaAsP, излучающие на длине волны 1190 нм, выращенные методом МОС-гидридной эпитаксии на подложке GaAs

    Физика и техника полупроводников, 45:9 (2011),  1274–1278
  30. InGaAs/GaAs/AlGaAs-лазеры, излучающие на длине волны 1190 нм, выращенные методом МОС-гидридной эпитаксии на подложке GaAs

    Физика и техника полупроводников, 44:12 (2010),  1640–1644
  31. Исследование эпитаксиально-интегрированных туннельно-связанных полупроводниковых лазеров, выращенных методом МОС-гидридной эпитаксии

    Физика и техника полупроводников, 44:2 (2010),  251–255
  32. Влияние толщины активной области на характеристики полупроводниковых лазеров на основе асимметричных гетероструктур AlGaAs/GaAs/InGaAs с расширенным волноводом

    Физика и техника полупроводников, 44:2 (2010),  246–250


© МИАН, 2026