RUS  ENG
Полная версия
ПЕРСОНАЛИИ

Слипченко Сергей Олегович

Публикации в базе данных Math-Net.Ru

  1. Буферные структуры GaAs/Si, полученные методом газофазной эпитаксии из металлоорганических соединений

    Письма в ЖТФ, 52:7 (2026),  48–52
  2. Быстродействующие токовые ключи на основе AlGaAs/GaAs-гетероструктур тиристоров с толстой $p$-базой (8 мкм)

    Физика и техника полупроводников, 59:10 (2025),  629–634
  3. Мостиковые InAs/InAsSbP-фотодиоды: особенности технологии создания

    Физика и техника полупроводников, 59:8 (2025),  505–509
  4. Исследование влияния формы маски на пространственное распределение скорости роста слоев GaAs, полученных методом МОС-гидридной селективной эпитаксии

    Физика и техника полупроводников, 59:8 (2025),  452–457
  5. Оптимизация дизайна гетероструктуры InGaAsP/InP мощных лазерных диодов, излучающих на длине волны 1.55 мкм

    Физика и техника полупроводников, 59:3 (2025),  171–178
  6. Резонаторы ИК лазеров на основе двумерных фотонных кристаллов для организации поверхностного вывода излучения

    Физика и техника полупроводников, 59:2 (2025),  113–121
  7. Одночастотные квантово-каскадные лазеры с переменной глубиной травления штрихов дифракционной решетки

    Физика и техника полупроводников, 59:1 (2025),  23–28
  8. Перестройка частоты излучения квантово-каскадного лазера среднего ИК диапазона

    Физика и техника полупроводников, 59:1 (2025),  13–15
  9. Перестраиваемый квантово-каскадный лазер для определения концентрации метана

    Письма в ЖТФ, 51:22 (2025),  66–70
  10. Оптические потери в резонаторе полупроводникового лазера, сформированного фотонным кристаллом

    Письма в ЖТФ, 51:19 (2025),  36–40
  11. Источники мощных лазерных импульсов субнаносекундной длительности на основе структур тиристорный ключ-лазерный диод для спектрального диапазона 1500 nm

    Письма в ЖТФ, 51:17 (2025),  49–52
  12. Источники мощных лазерных импульсов на длину волны 1550 nm на основе конструкций тиристорный ключ-лазер

    Письма в ЖТФ, 51:16 (2025),  21–25
  13. Одночастотная генерация на радиальных модах в квантово-каскадных лазерах на основе селективного кольцевого резонатора

    Письма в ЖТФ, 51:11 (2025),  52–56
  14. Компактные источники мощных лазерных импульсов (940 nm) наносекундной длительности на основе вертикальных сборок полупроводниковый лазер–тиристорный ключ

    Письма в ЖТФ, 51:11 (2025),  7–10
  15. Влияние длительности импульса накачки и фактора заполнения на мощностные характеристики квантово-каскадных лазеров

    Письма в ЖТФ, 51:4 (2025),  54–58
  16. Анализ механизмов насыщения мощных импульсных полупроводниковых лазеров на основе гетероструктуры InGaAsP/InP, излучающих на длине волны 1.55 мкм

    Квантовая электроника, 55:3 (2025),  141–145
  17. Многомодовые полупроводниковые лазеры с поверхностной распределенной обратной связью

    Оптика и спектроскопия, 132:11 (2024),  1131–1133
  18. Импульсный фотоактивируемый ключ на основе полупроводникового лазера и высоковольтного фотодиода AlGaAs/GaAs

    Физика и техника полупроводников, 58:12 (2024),  703–708
  19. Исследование с помощью микро-рамановской спектроскопии радиационных дефектов, сформированных сфокусированным ионным пучком Ga$^+$ в структуре GaAs/Al$_{0.3}$Ga$_{0.7}$As

    Физика и техника полупроводников, 58:10 (2024),  552–555
  20. Дрейфовый перенос носителей заряда в кремниевых $p^+$$n$$n^+$-структурах при температурах $\le$100 мK

    Физика и техника полупроводников, 58:8 (2024),  415–423
  21. Гибридные сборки тиристорный ключ-полупроводниковый лазер на основе гетероструктур Al–In–Ga–As–P/InP для мощных импульсных источников лазерного излучения (1400–1500 нм)

    Физика и техника полупроводников, 58:3 (2024),  165–170
  22. Низковольтные токовые ключи на основе гетероструктур тиристоров Al–In–Ga–As–P/InP для импульсных лазерных излучателей (1.5 мкм) наносекундной длительности

    Физика и техника полупроводников, 58:3 (2024),  161–164
  23. Влияние длины резонатора на выходную оптическую мощность полупроводниковых лазеров-тиристоров на основе гетероструктур AlGaAs/GaAs/InGaAs

    Физика и техника полупроводников, 58:2 (2024),  96–105
  24. Мощный перестраиваемый квантово-каскадный лазер

    Письма в ЖТФ, 50:22 (2024),  65–68
  25. Квантово-каскадные лазеры на основе активной области с малой чувствительностью к флуктуации толщины слоев

    Письма в ЖТФ, 50:16 (2024),  18–21
  26. Перестройка частоты излучения арочных квантово-каскадных лазеров среднего инфракрасного диапазона

    Письма в ЖТФ, 50:5 (2024),  23–27
  27. Тиристорные ключи на основе гетеро- и гомоструктур (Al)GaAs/GaAs для генерации наносекундных импульсов тока с высокой частотой

    Письма в ЖТФ, 50:4 (2024),  43–46
  28. Температурная зависимость выходной оптической мощности полупроводниковых лазеров-тиристоров на основе гетероструктур AlGaAs/GaAs/InGaAs

    Квантовая электроника, 54:4 (2024),  218–223
  29. Квантовые каскадные лазеры InGaAs/AlInAs/InP с отражающими и просветляющими оптическими покрытиями

    Квантовая электроника, 54:2 (2024),  100–103
  30. Селекция латеральных мод микролинеек одномодовых лазерных диодов (1050 нм) во внешнем резонаторе

    Физика и техника полупроводников, 57:8 (2023),  693–699
  31. Сильноточные низковольтные ключи для импульсов нс-длительности на основе тиристорных гомо- и гетероструктур (Al)GaAs/GaAs

    Физика и техника полупроводников, 57:8 (2023),  678–683
  32. Люминесценция в $p$$i$$n$-структурах с компенсированными квантовыми ямами

    Физика и техника полупроводников, 57:8 (2023),  663–673
  33. Исследование динамики включения низковольтных InP-гомотиристоров

    Физика и техника полупроводников, 57:4 (2023),  295–300
  34. Генерация случайных последовательностей за счет переключения поперечных мод в квантовом каскадном лазере

    Письма в ЖТФ, 49:22 (2023),  35–38
  35. Низковольтные гетеротиристоры InP для генерации импульсов тока длительностью 50–150 ns

    Письма в ЖТФ, 49:16 (2023),  29–32
  36. Металлодиэлектрические зеркальные покрытия для квантовых каскадных лазеров с длиной волны излучения 4–5 мкм

    Квантовая электроника, 53:8 (2023),  641–644
  37. Мощные многомодовые полупроводниковые лазеры (λ = 976 нм) на основе асимметричных гетероструктур с расширенным волноводом и пониженной расходимостью излучения в перпендикулярной плоскости

    Квантовая электроника, 53:5 (2023),  374–378
  38. Диэлектрические высокоотражающие зеркальные покрытия для квантовых каскадных лазеров с длиной волны излучения 4 – 5 мкм

    Квантовая электроника, 53:5 (2023),  370–373
  39. Оптимизация параметров резонатора мощных полупроводниковых лазеров InGaAs/AlGaAs/GaAs (λ = 1060 нм) для эффективной работы при сверхвысоких импульсных токах накачки

    Квантовая электроника, 53:1 (2023),  17–24
  40. Источник мощного импульсного лазерного излучения (1060 нм) с высокой частотой следования импульсов на основе гибридной сборки линейки лазерных диодов и 2D массива оптотиристоров как высокоскоростного токового ключа

    Квантовая электроника, 53:1 (2023),  11–16
  41. Квазинепрерывные микролинейки мощных полупроводниковых лазеров (λ = 976 нм) с увеличенной длиной резонатора на основе асимметричных гетероструктур с широким волноводом

    Квантовая электроника, 53:1 (2023),  6–10
  42. Лазерные диоды (850 нм) на основе асимметричной AlGaAs/GaAs-гетероструктуры с объемной активной областью для генерации мощных субнаносекундных оптических импульсов

    Квантовая электроника, 53:1 (2023),  1–5
  43. Поверхностно-излучающие квантово-каскадные лазеры с дифракционной решеткой, сформированной методом прямой ионной литографии

    Физика и техника полупроводников, 56:9 (2022),  908–914
  44. Исследование пространственных характеристик излучения поверхностно-излучающих квантово-каскадных лазеров с кольцевым резонатором

    Физика и техника полупроводников, 56:6 (2022),  601–606
  45. Особенности одночастотной генерации в квантово-каскадных лазерах спектрального диапазона 7.5–8.0 $\mu$m с малой длиной резонатора

    Письма в ЖТФ, 48:5 (2022),  7–10
  46. Мощные лазерные диоды на основе InGaAs(Р)/Al(In)GaAs(P)/GaAs-гетероструктур с низкими внутренними оптическими потерями

    Квантовая электроника, 52:12 (2022),  1152–1165
  47. Селекция мод латерального волновода для реализации одномодового режима работы лазеров с распределенным брэгговским зеркалом

    Квантовая электроника, 52:10 (2022),  889–894
  48. Исследование динамики разогрева в квазинепрерывном режиме активной области мощных полупроводниковых лазеров (1060 нм) со сверхширокой излучающей апертурой (800 мкм)

    Квантовая электроника, 52:9 (2022),  794–798
  49. Анализ ватт-амперных характеристик мощных полупроводниковых лазеров (1060 нм) в рамках стационарной двумерной модели

    Квантовая электроника, 52:4 (2022),  343–350
  50. Квазинепрерывные мощные полупроводниковые лазеры (1060 нм) со сверхширокой излучающей апертурой

    Квантовая электроника, 52:4 (2022),  340–342
  51. Мощные импульсные полупроводниковые лазеры (910 нм) мезаполосковой конструкции со сверхширокой излучающей апертурой на основе туннельно-связанных гетероструктур InGaAs/AlGaAs/GaAs

    Квантовая электроника, 52:2 (2022),  174–178
  52. Вертикальные стеки мощных импульсных (100 нc) полупроводниковых лазеров киловаттного уровня пиковой мощности на основе мезаполосковых волноводов со сверхширокой (800 мкм) апертурой на длине волны 1060 нм

    Квантовая электроника, 52:2 (2022),  171–173
  53. Рабочие характеристики полупроводниковых лазеров на квантовых ямах в зависимости от ширины волноводной области

    Физика и техника полупроводников, 55:12 (2021),  1229–1235
  54. Квантово-каскадный лазер с выводом излучения через текстурированный слой

    Физика и техника полупроводников, 55:11 (2021),  1081–1085
  55. Поверхностно-излучающий квантово-каскадный лазер с кольцевым резонатором

    Физика и техника полупроводников, 55:7 (2021),  602–606
  56. Исследование пространственной динамики включения лазера-тиристора (905 нм) на основе многопереходной гетероструктуры AlGaAs/InGaAs/GaAs

    Физика и техника полупроводников, 55:5 (2021),  466–472
  57. Анализ пороговых условий и эффективности генерации замкнутых мод в больших прямоугольных резонаторах на основе лазерных гетероструктур AlGaAs/GaAs/InGaAs

    Физика и техника полупроводников, 55:5 (2021),  460–465
  58. Изотипные гетероструктуры $n$-AlGaAs/$n$-GaAs, оптимизированные для эффективной межзонной излучательной рекомбинации при накачке электрическим током

    Физика и техника полупроводников, 55:5 (2021),  427–433
  59. Мощные непрерывные лазеры InGaAs/AlGaAs (1070 нм) с расширенным латеральным волноводом мезаполосковой конструкции

    Физика и техника полупроводников, 55:4 (2021),  344–348
  60. Структурно-спектроскопические исследования эпитаксиальных слоев GaAs, выращенных на податливых подложках на основе сверхструктурного слоя и протопористого кремния

    Физика и техника полупроводников, 55:1 (2021),  86–95
  61. Спектроскопические исследования интегрированных гетероструктур GaAs/Si

    Физика и техника полупроводников, 55:1 (2021),  34–40
  62. Гетероструктуры квантово-каскадных лазеров с неселективным заращиванием методом газофазной эпитаксии

    Письма в ЖТФ, 47:24 (2021),  46–50
  63. Исследование динамики выходной оптической мощности полупроводниковых лазеров (1070 nm) с маломодовым латеральным волноводом мезаполосковой конструкции при сверхвысоких токах накачки

    Письма в ЖТФ, 47:7 (2021),  42–45
  64. Оптическое поглощение в волноводе AlGaAs-гетероструктуры n-типа

    Квантовая электроника, 51:11 (2021),  987–991
  65. Мощные полупроводниковые гибридные импульсные лазерные излучатели в диапазоне длин волн 900–920 нм

    Квантовая электроника, 51:10 (2021),  912–914
  66. Мощные полупроводниковые AlGaInAs/InP-лазеры спектрального диапазона 1.9–2.0 мкм со сверхузким волноводом

    Квантовая электроника, 51:10 (2021),  909–911
  67. Полупроводниковые лазеры InGaAs/AlGaAs/GaAs ($\lambda$ = 900–920 нм) с расширенным асимметричным волноводом и улучшенной вольт-амперной характеристикой

    Квантовая электроника, 51:10 (2021),  905–908
  68. Сравнение полупроводниковых лазеров AlGaInAs/InP (λ = 1450–1500 нм) со сверхузким и сильно асимметричным типом волноводов

    Квантовая электроника, 51:4 (2021),  283–286
  69. Полупроводниковые AlGaInAs/InP-лазеры (λ = 1450 – 1500 нм) с сильно асимметричным волноводом

    Квантовая электроника, 51:2 (2021),  133–136
  70. Ватт-амперные характеристики мощных импульсных полупроводниковых лазеров (1060 нм), работающих при повышенных (до 90 °С) температурах

    Квантовая электроника, 51:2 (2021),  129–132
  71. Экспериментальная методика исследования оптического поглощения в волноводных слоях полупроводниковых лазерных гетероструктур

    Квантовая электроника, 51:2 (2021),  124–128
  72. Динамика спектров квантово-каскадных лазеров, генерирующих частотные гребенки в длинноволновом инфракрасном диапазоне

    ЖТФ, 90:8 (2020),  1333–1336
  73. Спектральные характеристики полукольцевых квантово-каскадных лазеров

    Оптика и спектроскопия, 128:8 (2020),  1165–1170
  74. Исследование спектров генерации арочных квантово-каскадных лазеров

    Оптика и спектроскопия, 128:6 (2020),  696–700
  75. Исследование пространственной и токовой динамики оптических потерь в полупроводниковых лазерных гетероструктурах методом оптического зондирования

    Физика и техника полупроводников, 54:8 (2020),  734–742
  76. Модель управления конкуренцией замкнутых модовых структур в прямоугольных резонаторах большого размера на основе лазерных гетероструктур AlGaAs/InGaAs/GaAs

    Физика и техника полупроводников, 54:5 (2020),  484–489
  77. Моделирование пространственной динамики включения лазера-тиристора ($\lambda$ = 905 нм) на основе многопереходной гетероструктуры AlGaAs/InGaAs/GaAs

    Физика и техника полупроводников, 54:5 (2020),  478–483
  78. Исследования процессов транспорта носителей заряда в изотипных гетероструктурах типа $n^{+}$-GaAs/$n^{0}$-GaAs/$n^{+}$-GaAs с тонким широкозонным барьером AlGaAs

    Физика и техника полупроводников, 54:5 (2020),  452–457
  79. Одномодовые лазеры (1050 нм) мезаполосковой конструкции на основе гетероструктуры AlGaAs/GaAs со сверхузким волноводом

    Физика и техника полупроводников, 54:4 (2020),  414–419
  80. Излучательные характеристики мощных полупроводниковых лазеров (1060 нм) с узким мезаполосковым контактом на основе асимметричных гетероструктур AlGaAs/GaAs с широким волноводом

    Физика и техника полупроводников, 54:4 (2020),  408–413
  81. Исследование пространственных характеристик излучения квантовых каскадных лазеров для спектрального диапазона 8 $\mu$m

    Письма в ЖТФ, 46:22 (2020),  51–54
  82. Гетероструктуры квантово-каскадных лазеров спектрального диапазона 4.6 $\mu$m для реализации непрерывного режима генерации

    Письма в ЖТФ, 46:9 (2020),  35–38
  83. Полупроводниковые лазеры на основе гетероструктур AlGaInAs/InP со сверхузким волноводом и повышенным электронным барьером

    Квантовая электроника, 50:12 (2020),  1123–1125
  84. Тройной интегрированный лазер-тиристор

    Квантовая электроника, 50:11 (2020),  1001–1003
  85. Разработка и исследование мощных квантово-каскадных лазеров для спектрального диапазона 4.5–4.6 мкм

    Квантовая электроника, 50:11 (2020),  989–994
  86. Динамика излучения Yb, Er-лазера с диодной накачкой при воздействии на пассивный затвор мощной внешней подсветки

    Квантовая электроника, 50:9 (2020),  822–825
  87. Вытекание излучения из волновода мощных полупроводниковых AlGaAs/InGaAs/GaAs-лазеров

    Квантовая электроника, 50:8 (2020),  722–726
  88. Квантово-каскадные лазеры мощностью 10 Вт для спектральной области 4.6 мкм

    Квантовая электроника, 50:8 (2020),  720–721
  89. Выгорание продольного пространственного провала (LSHB) в мощных полупроводниковых лазерах: численный анализ

    Квантовая электроника, 50:2 (2020),  147–152
  90. Мощные (более 1 Вт) квантовые каскадные лазеры для длинноволнового ИК диапазона при комнатной температуре

    Квантовая электроника, 50:2 (2020),  141–142
  91. Особенности формирования замкнутых модовых структур в прямоугольных резонаторах на основе гетероструктур InGaAs/AlGaAs/GaAs для мощных полупроводниковых лазеров

    Физика и техника полупроводников, 53:6 (2019),  839–843
  92. Особенности транспорта носителей заряда в структурах $n^{+}$$n^{0}$$n^{+}$ с гетеропереходом GaAs/AlGaAs при сверхвысоких плотностях тока

    Физика и техника полупроводников, 53:6 (2019),  816–823
  93. Генерация частотных гребенок квантово-каскадными лазерами спектрального диапазона 8 $\mu$m

    Письма в ЖТФ, 45:20 (2019),  18–21
  94. Мощные квантово-каскадные лазеры с длиной волны генерации 8 $\mu$m

    Письма в ЖТФ, 45:14 (2019),  48–51
  95. Одночастотная генерация арочных квантово-каскадных лазеров при комнатной температуре

    Письма в ЖТФ, 45:8 (2019),  31–33
  96. Экспериментальные исследования динамики распространения включенного состояния низковольтных лазеров-тиристоров на основе гетероструктур AlGaAs/InGaAs/GaAs

    Письма в ЖТФ, 45:8 (2019),  7–11
  97. Исследование многомодовых полупроводниковых лазеров на основе гетероструктуры типа зарощенная меза

    Квантовая электроника, 49:12 (2019),  1172–1174
  98. Перестраиваемый источник одночастотного излучения на основе массива РОС-лазеров для спектрального диапазона 1.55 мкм

    Квантовая электроника, 49:12 (2019),  1158–1162
  99. Двойной интегрированный лазер-тиристор

    Квантовая электроника, 49:11 (2019),  1011–1013
  100. РОС-лазеры с высоким коэффициентом связи для спектральной области 1.55 мкм

    Квантовая электроника, 49:9 (2019),  801–803
  101. AlGaAs/GaAs/InGaAs-лазеры со сверхузким волноводом

    Квантовая электроника, 49:7 (2019),  661–665
  102. Импульсный лазерный модуль спектрального диапазона 1500–1600 нм на основе мощного полупроводникового лазера

    Квантовая электроника, 49:5 (2019),  488–492
  103. Высокотемпературная лазерная генерация квантово-каскадных лазеров в спектральной области 8 $\mu$m

    Физика твердого тела, 60:11 (2018),  2251–2254
  104. Динамика включения квантово-каскадных лазеров с длиной волны генерации 8100 nm при комнатной температуре

    ЖТФ, 88:11 (2018),  1708–1710
  105. Двухчастотная генерация в квантово-каскадных лазерах спектрального диапазона 8 $\mu$m

    Оптика и спектроскопия, 125:3 (2018),  387–390
  106. Полностью электрическое управление разверткой лазерного луча на основе квантово-размерной гетероструктуры с интегрированным распределенным брэгговским зеркалом

    Физика и техника полупроводников, 52:12 (2018),  1491–1498
  107. Влияние толщины волноводных слоев на выходные характеристики полупроводниковых лазеров с длинами волн излучения 1500–1600 нм

    Квантовая электроника, 48:3 (2018),  197–200
  108. Полностью оптическая ячейка-модулятор на основе AlGaAs/GaAs/InGaAs-гетероструктур на длину волны 905 nm

    Письма в ЖТФ, 43:2 (2017),  31–37
  109. Полупроводниковые AlGaInAs / InP-лазеры со сверхузкими волноводами

    Квантовая электроника, 47:3 (2017),  272–274
  110. Исследование импульсных характеристик полупроводниковых лазеров с расширенным волноводом при низких температурах (110–120 K)

    Физика и техника полупроводников, 50:10 (2016),  1414–1419
  111. К вопросу о внутренних оптических потерях и токовых утечках в лазерных гетероструктурах на основе твердых растворов AlGaInAs/InP

    Физика и техника полупроводников, 50:9 (2016),  1247–1252
  112. Свойства нитрида алюминия, полученного методом реактивного ионно-плазменного распыления

    Физика и техника полупроводников, 49:10 (2015),  1429–1433
  113. Модель оптической ячейки на основе конкуренции генерации модовых структур различной добротности в мощных полупроводниковых лазерах

    Физика и техника полупроводников, 49:8 (2015),  1108–1114
  114. Картирование интенсивности излучения лазерного диода методом атомно-силовой микроскопии

    Письма в ЖТФ, 41:18 (2015),  8–15
  115. Подавление процесса делокализации носителей заряда в мощных импульсных полупроводниковых лазерах

    Письма в ЖТФ, 41:6 (2015),  10–16
  116. Поверхностные интегрированные дифракционные решетки высших порядков для полупроводниковых лазеров

    Квантовая электроника, 45:12 (2015),  1091–1097
  117. Оптимизация параметров резонатора лазеров на основе твердых растворов AlGaInAsP/InP (λ=1470 нм)

    Квантовая электроника, 45:10 (2015),  879–883
  118. Исследование коэффициента поглощения в слоях гетероструктуры полупроводникового лазера

    Квантовая электроника, 45:7 (2015),  604–606
  119. Влияние параметров лазерного резонатора на насыщение ватт-амперных характеристик мощных импульсных лазеров

    Квантовая электроника, 45:7 (2015),  597–600
  120. К вопросу о температурной делокализации носителей заряда в квантово-размерных гетероструктурах GaAs/AlGaAs/InGaAs

    Физика и техника полупроводников, 48:10 (2014),  1377–1382
  121. Эффективность управления мощного лазера-тиристора, излучающего в спектральном диапазоне 890–910 нм

    Физика и техника полупроводников, 48:5 (2014),  716–718
  122. Многоволновый интегральный оптический модулятор лазерного излучения на основе полупроводниковых гетероструктур

    Физика и техника полупроводников, 48:5 (2014),  710–715
  123. Анализ излучательной эффективности мощных полупроводниковых лазеров при выполнении пороговых условий генерации для замкнутой моды

    Физика и техника полупроводников, 48:5 (2014),  705–709
  124. Линейки лазерных диодов на основе гетероструктур AlGaAsP/GaAs, излучающие на длине волны 850 нм

    Физика и техника полупроводников, 48:3 (2014),  388–391
  125. Насыщение ватт-амперных характеристик мощных лазеров (λ = 1.0 – 1.1 мкм) в импульсном режиме генерации

    Квантовая электроника, 44:11 (2014),  993–996
  126. Спектральные характеристики многомодовых полупроводниковых лазеров с поверхностной дифракционной решеткой высших порядков

    Квантовая электроника, 44:10 (2014),  907–911
  127. Полупроводниковые лазеры (1020–1100 нм) с асимметричным расширенным одномодовым волноводом на основе гетероструктур AlGaAs/GaAs

    Физика и техника полупроводников, 47:8 (2013),  1082–1086
  128. Полупроводниковые лазеры с внутренней селекцией излучения

    Физика и техника полупроводников, 47:1 (2013),  124–128
  129. Инжекционные полупроводниковые лазеры InGaAs/GaAs с волноводом на одиночной квантовой яме

    Письма в ЖТФ, 39:8 (2013),  9–16
  130. Лазерные диоды, излучающие на длине волны 850 нм, на основе гетероструктур AlGaAsP/GaAs

    Физика и техника полупроводников, 46:10 (2012),  1344–1348
  131. Излучательная и безызлучательная рекомбинация в активных слоях мощных лазерных диодов InGaAs/GaAs/AlGaAs

    Физика и техника полупроводников, 46:10 (2012),  1339–1343
  132. Температурная зависимость пороговой плотности тока в полупроводниковых лазерах ($\lambda$ = 1050–1070 нм)

    Физика и техника полупроводников, 46:9 (2012),  1234–1238
  133. Температурная делокализация носителей заряда в полупроводниковых лазерах ($\lambda$ = 1010–1070 нм)

    Физика и техника полупроводников, 46:9 (2012),  1230–1233
  134. Анализ условий срыва генерации мод резонатора Фабри–Перо в полупроводниковых лазерах с полосковым контактом

    Физика и техника полупроводников, 45:10 (2011),  1431–1438
  135. Спектры электролюминесценции и поглощения полупроводниковых лазеров с низкими оптическими потерями на основе квантово-размерных гетероструктур InGaAs/AlGaAs/GaAs

    Физика и техника полупроводников, 45:5 (2011),  682–687
  136. Анализ пороговых условий генерации замкнутой моды в полупроводниковых лазерах Фабри–Перо

    Физика и техника полупроводников, 45:5 (2011),  672–676
  137. Температурная зависимость пороговой плотности тока и внешней дифференциальной квантовой эффективности в полупроводниковых лазерах ($\lambda$ = 900–920 нм)

    Физика и техника полупроводников, 44:10 (2010),  1417–1421
  138. Температурная зависимость внутренних оптических потерь в полупроводниковых лазерах ($\lambda$ = 900–920 нм)

    Физика и техника полупроводников, 44:10 (2010),  1411–1416
  139. Двухполосная генерация в эпитаксиально интегрированных туннельно-связанных полупроводниковых лазерах

    Физика и техника полупроводников, 44:6 (2010),  833–836
  140. Импульсные полупроводниковые лазеры с повышенной оптической прочностью выходных зеркал резонатора

    Физика и техника полупроводников, 44:6 (2010),  817–821
  141. Температурная делокализация носителей заряда в полупроводниковых лазерах

    Физика и техника полупроводников, 44:5 (2010),  688–693
  142. Диссипативные потери среднего инфракрасного излучения в диэлектрическом волноводе

    Физика и техника полупроводников, 44:2 (2010),  256–259
  143. Исследование эпитаксиально-интегрированных туннельно-связанных полупроводниковых лазеров, выращенных методом МОС-гидридной эпитаксии

    Физика и техника полупроводников, 44:2 (2010),  251–255
  144. Влияние толщины активной области на характеристики полупроводниковых лазеров на основе асимметричных гетероструктур AlGaAs/GaAs/InGaAs с расширенным волноводом

    Физика и техника полупроводников, 44:2 (2010),  246–250
  145. Особенности синхронизации мод в лазерах с квантовой ямой в широком волноводном слое

    Письма в ЖТФ, 36:22 (2010),  29–36
  146. Исследование пространственно-инвариантных пучков, полученных от полупроводниковых лазеров с широким полоском с торцевым выводом излучения

    Письма в ЖТФ, 36:1 (2010),  22–30

  147. Квантово-каскадные лазеры для спектрального диапазона 8 мкм: технология, дизайн и анализ

    УФН, 194:1 (2024),  98–105


© МИАН, 2026