RUS  ENG
Полная версия
ПЕРСОНАЛИИ

Лютецкий Андрей Владимирович

Публикации в базе данных Math-Net.Ru

  1. Одночастотные квантово-каскадные лазеры с переменной глубиной травления штрихов дифракционной решетки

    Физика и техника полупроводников, 59:1 (2025),  23–28
  2. Перестройка частоты излучения квантово-каскадного лазера среднего ИК диапазона

    Физика и техника полупроводников, 59:1 (2025),  13–15
  3. Перестраиваемый квантово-каскадный лазер для определения концентрации метана

    Письма в ЖТФ, 51:22 (2025),  66–70
  4. Одночастотная генерация на радиальных модах в квантово-каскадных лазерах на основе селективного кольцевого резонатора

    Письма в ЖТФ, 51:11 (2025),  52–56
  5. Влияние длительности импульса накачки и фактора заполнения на мощностные характеристики квантово-каскадных лазеров

    Письма в ЖТФ, 51:4 (2025),  54–58
  6. Мощный перестраиваемый квантово-каскадный лазер

    Письма в ЖТФ, 50:22 (2024),  65–68
  7. Квантово-каскадные лазеры на основе активной области с малой чувствительностью к флуктуации толщины слоев

    Письма в ЖТФ, 50:16 (2024),  18–21
  8. Перестройка частоты излучения арочных квантово-каскадных лазеров среднего инфракрасного диапазона

    Письма в ЖТФ, 50:5 (2024),  23–27
  9. Квантовые каскадные лазеры InGaAs/AlInAs/InP с отражающими и просветляющими оптическими покрытиями

    Квантовая электроника, 54:2 (2024),  100–103
  10. Генерация случайных последовательностей за счет переключения поперечных мод в квантовом каскадном лазере

    Письма в ЖТФ, 49:22 (2023),  35–38
  11. Металлодиэлектрические зеркальные покрытия для квантовых каскадных лазеров с длиной волны излучения 4–5 мкм

    Квантовая электроника, 53:8 (2023),  641–644
  12. Диэлектрические высокоотражающие зеркальные покрытия для квантовых каскадных лазеров с длиной волны излучения 4 – 5 мкм

    Квантовая электроника, 53:5 (2023),  370–373
  13. Поверхностно-излучающие квантово-каскадные лазеры с дифракционной решеткой, сформированной методом прямой ионной литографии

    Физика и техника полупроводников, 56:9 (2022),  908–914
  14. Исследование пространственных характеристик излучения поверхностно-излучающих квантово-каскадных лазеров с кольцевым резонатором

    Физика и техника полупроводников, 56:6 (2022),  601–606
  15. Особенности одночастотной генерации в квантово-каскадных лазерах спектрального диапазона 7.5–8.0 $\mu$m с малой длиной резонатора

    Письма в ЖТФ, 48:5 (2022),  7–10
  16. Мощные лазерные диоды на основе InGaAs(Р)/Al(In)GaAs(P)/GaAs-гетероструктур с низкими внутренними оптическими потерями

    Квантовая электроника, 52:12 (2022),  1152–1165
  17. Селекция мод латерального волновода для реализации одномодового режима работы лазеров с распределенным брэгговским зеркалом

    Квантовая электроника, 52:10 (2022),  889–894
  18. Квантово-каскадный лазер с выводом излучения через текстурированный слой

    Физика и техника полупроводников, 55:11 (2021),  1081–1085
  19. Поверхностно-излучающий квантово-каскадный лазер с кольцевым резонатором

    Физика и техника полупроводников, 55:7 (2021),  602–606
  20. Гетероструктуры квантово-каскадных лазеров с неселективным заращиванием методом газофазной эпитаксии

    Письма в ЖТФ, 47:24 (2021),  46–50
  21. Мощные полупроводниковые AlGaInAs/InP-лазеры спектрального диапазона 1.9–2.0 мкм со сверхузким волноводом

    Квантовая электроника, 51:10 (2021),  909–911
  22. Полупроводниковые лазеры InGaAs/AlGaAs/GaAs ($\lambda$ = 900–920 нм) с расширенным асимметричным волноводом и улучшенной вольт-амперной характеристикой

    Квантовая электроника, 51:10 (2021),  905–908
  23. Сравнение полупроводниковых лазеров AlGaInAs/InP (λ = 1450–1500 нм) со сверхузким и сильно асимметричным типом волноводов

    Квантовая электроника, 51:4 (2021),  283–286
  24. Полупроводниковые AlGaInAs/InP-лазеры (λ = 1450 – 1500 нм) с сильно асимметричным волноводом

    Квантовая электроника, 51:2 (2021),  133–136
  25. Динамика спектров квантово-каскадных лазеров, генерирующих частотные гребенки в длинноволновом инфракрасном диапазоне

    ЖТФ, 90:8 (2020),  1333–1336
  26. Спектральные характеристики полукольцевых квантово-каскадных лазеров

    Оптика и спектроскопия, 128:8 (2020),  1165–1170
  27. Излучательные характеристики мощных полупроводниковых лазеров (1060 нм) с узким мезаполосковым контактом на основе асимметричных гетероструктур AlGaAs/GaAs с широким волноводом

    Физика и техника полупроводников, 54:4 (2020),  408–413
  28. Исследование пространственных характеристик излучения квантовых каскадных лазеров для спектрального диапазона 8 $\mu$m

    Письма в ЖТФ, 46:22 (2020),  51–54
  29. Гетероструктуры квантово-каскадных лазеров спектрального диапазона 4.6 $\mu$m для реализации непрерывного режима генерации

    Письма в ЖТФ, 46:9 (2020),  35–38
  30. Полупроводниковые лазеры на основе гетероструктур AlGaInAs/InP со сверхузким волноводом и повышенным электронным барьером

    Квантовая электроника, 50:12 (2020),  1123–1125
  31. Разработка и исследование мощных квантово-каскадных лазеров для спектрального диапазона 4.5–4.6 мкм

    Квантовая электроника, 50:11 (2020),  989–994
  32. Квантово-каскадные лазеры мощностью 10 Вт для спектральной области 4.6 мкм

    Квантовая электроника, 50:8 (2020),  720–721
  33. Генерация частотных гребенок квантово-каскадными лазерами спектрального диапазона 8 $\mu$m

    Письма в ЖТФ, 45:20 (2019),  18–21
  34. Мощные квантово-каскадные лазеры с длиной волны генерации 8 $\mu$m

    Письма в ЖТФ, 45:14 (2019),  48–51
  35. Одночастотная генерация арочных квантово-каскадных лазеров при комнатной температуре

    Письма в ЖТФ, 45:8 (2019),  31–33
  36. Перестраиваемый источник одночастотного излучения на основе массива РОС-лазеров для спектрального диапазона 1.55 мкм

    Квантовая электроника, 49:12 (2019),  1158–1162
  37. РОС-лазеры с высоким коэффициентом связи для спектральной области 1.55 мкм

    Квантовая электроника, 49:9 (2019),  801–803
  38. Высокотемпературная лазерная генерация квантово-каскадных лазеров в спектральной области 8 $\mu$m

    Физика твердого тела, 60:11 (2018),  2251–2254
  39. Динамика включения квантово-каскадных лазеров с длиной волны генерации 8100 nm при комнатной температуре

    ЖТФ, 88:11 (2018),  1708–1710
  40. Двухчастотная генерация в квантово-каскадных лазерах спектрального диапазона 8 $\mu$m

    Оптика и спектроскопия, 125:3 (2018),  387–390
  41. Полосковая структура для изорешеточных квантовых каскадных лазеров

    Физика и техника полупроводников, 52:12 (2018),  1499–1502
  42. Изготовление и исследование изорешеточной гетероструктуры для квантовых каскадных лазеров

    Физика и техника полупроводников, 52:7 (2018),  812–815
  43. Квантовые каскадные лазеры с длиной волны излучения 4.8 $\mu$m, работающие при комнатной температуре

    Письма в ЖТФ, 44:18 (2018),  17–23
  44. Влияние толщины волноводных слоев на выходные характеристики полупроводниковых лазеров с длинами волн излучения 1500–1600 нм

    Квантовая электроника, 48:3 (2018),  197–200
  45. Поляризационные эффекты в гетеролазерах In$_{28}$Ga$_{72}$As/GaAs на квантовой яме

    Физика твердого тела, 59:9 (2017),  1684–1690
  46. Полупроводниковые AlGaInAs / InP-лазеры со сверхузкими волноводами

    Квантовая электроника, 47:3 (2017),  272–274
  47. Исследование импульсных характеристик полупроводниковых лазеров с расширенным волноводом при низких температурах (110–120 K)

    Физика и техника полупроводников, 50:10 (2016),  1414–1419
  48. К вопросу о внутренних оптических потерях и токовых утечках в лазерных гетероструктурах на основе твердых растворов AlGaInAs/InP

    Физика и техника полупроводников, 50:9 (2016),  1247–1252
  49. Переключение между режимами синхронизации мод и модуляции добротности в двухсекционных лазерах с квантовыми ямами при изменении свойств поглотителя за счет эффекта Штарка

    Физика и техника полупроводников, 50:6 (2016),  843–847
  50. Скорость захвата электронов в зависимости от глубины квантовой ямы в полупроводниковых лазерах

    Физика и техника полупроводников, 50:5 (2016),  679–682
  51. Свойства нитрида алюминия, полученного методом реактивного ионно-плазменного распыления

    Физика и техника полупроводников, 49:10 (2015),  1429–1433
  52. Оптимизация параметров резонатора лазеров на основе твердых растворов AlGaInAsP/InP (λ=1470 нм)

    Квантовая электроника, 45:10 (2015),  879–883
  53. Исследование коэффициента поглощения в слоях гетероструктуры полупроводникового лазера

    Квантовая электроника, 45:7 (2015),  604–606
  54. Влияние параметров лазерного резонатора на насыщение ватт-амперных характеристик мощных импульсных лазеров

    Квантовая электроника, 45:7 (2015),  597–600
  55. К вопросу о температурной делокализации носителей заряда в квантово-размерных гетероструктурах GaAs/AlGaAs/InGaAs

    Физика и техника полупроводников, 48:10 (2014),  1377–1382
  56. Многоволновый интегральный оптический модулятор лазерного излучения на основе полупроводниковых гетероструктур

    Физика и техника полупроводников, 48:5 (2014),  710–715
  57. Линейки лазерных диодов на основе гетероструктур AlGaAsP/GaAs, излучающие на длине волны 850 нм

    Физика и техника полупроводников, 48:3 (2014),  388–391
  58. Насыщение ватт-амперных характеристик мощных лазеров (λ = 1.0 – 1.1 мкм) в импульсном режиме генерации

    Квантовая электроника, 44:11 (2014),  993–996
  59. Спектральные характеристики многомодовых полупроводниковых лазеров с поверхностной дифракционной решеткой высших порядков

    Квантовая электроника, 44:10 (2014),  907–911
  60. Характеристики лазерных диодов, излучающих на длине волны 850 нм, с различными способами компенсации внутренних механических напряжений в гетероструктуре AlGaAs(P)/GaAs

    Физика и техника полупроводников, 47:8 (2013),  1078–1081
  61. Акустоэлектронное взаимодействие в квантовых лазерных гетероструктурах

    Физика и техника полупроводников, 47:1 (2013),  137–142
  62. Полупроводниковые лазеры с внутренней селекцией излучения

    Физика и техника полупроводников, 47:1 (2013),  124–128
  63. Лазерные диоды, излучающие на длине волны 850 нм, на основе гетероструктур AlGaAsP/GaAs

    Физика и техника полупроводников, 46:10 (2012),  1344–1348
  64. Температурная зависимость пороговой плотности тока в полупроводниковых лазерах ($\lambda$ = 1050–1070 нм)

    Физика и техника полупроводников, 46:9 (2012),  1234–1238
  65. Температурная делокализация носителей заряда в полупроводниковых лазерах ($\lambda$ = 1010–1070 нм)

    Физика и техника полупроводников, 46:9 (2012),  1230–1233
  66. Температурная зависимость пороговой плотности тока и внешней дифференциальной квантовой эффективности в полупроводниковых лазерах ($\lambda$ = 900–920 нм)

    Физика и техника полупроводников, 44:10 (2010),  1417–1421
  67. Двухполосная генерация в эпитаксиально интегрированных туннельно-связанных полупроводниковых лазерах

    Физика и техника полупроводников, 44:6 (2010),  833–836
  68. Импульсные полупроводниковые лазеры с повышенной оптической прочностью выходных зеркал резонатора

    Физика и техника полупроводников, 44:6 (2010),  817–821
  69. Температурная делокализация носителей заряда в полупроводниковых лазерах

    Физика и техника полупроводников, 44:5 (2010),  688–693
  70. Исследование эпитаксиально-интегрированных туннельно-связанных полупроводниковых лазеров, выращенных методом МОС-гидридной эпитаксии

    Физика и техника полупроводников, 44:2 (2010),  251–255
  71. Влияние толщины активной области на характеристики полупроводниковых лазеров на основе асимметричных гетероструктур AlGaAs/GaAs/InGaAs с расширенным волноводом

    Физика и техника полупроводников, 44:2 (2010),  246–250
  72. Особенности синхронизации мод в лазерах с квантовой ямой в широком волноводном слое

    Письма в ЖТФ, 36:22 (2010),  29–36
  73. Градиентное управление направлением излучения InGaAsP/InP гетеролазеров

    Письма в ЖТФ, 36:12 (2010),  48–54
  74. Исследование пространственно-инвариантных пучков, полученных от полупроводниковых лазеров с широким полоском с торцевым выводом излучения

    Письма в ЖТФ, 36:1 (2010),  22–30

  75. Квантово-каскадные лазеры для спектрального диапазона 8 мкм: технология, дизайн и анализ

    УФН, 194:1 (2024),  98–105


© МИАН, 2026