|
|
Publications in Math-Net.Ru
-
Growth of carbon particles during detonation of condensed explosives
Fizika Goreniya i Vzryva, 61:2 (2025), 41–55
-
On electromagnetic measurements of particle velocity
Fizika Goreniya i Vzryva, 59:5 (2023), 53–62
-
Detonation of ultrafine explosives
Fizika Goreniya i Vzryva, 57:3 (2021), 111–118
-
Detonation of an explosive containing nano-sized inclusions
Fizika Goreniya i Vzryva, 57:1 (2021), 112–119
-
Diagnostics of the chemical reaction zone in detonation of explosive solids
Fizika Goreniya i Vzryva, 56:6 (2020), 95–106
-
Detonation of low-density explosives
Fizika Goreniya i Vzryva, 55:1 (2019), 128–135
-
Initiation of PETN detonation by an impactor and a high-enthalpy gas flow
Fizika Goreniya i Vzryva, 52:1 (2016), 109–115
-
Physical mechanisms of high-enthalpy initiation
Fizika Goreniya i Vzryva, 51:6 (2015), 85–95
-
Evolution of electrical conductivity of emulsion explosives during their detonation conversion
Fizika Goreniya i Vzryva, 51:3 (2015), 91–97
-
Regimes of detonation of solid explosives with nonclassical fast kinetics
Fizika Goreniya i Vzryva, 49:3 (2013), 77–87
-
Initiation of detonation of a porous high explosive by a high-enthalpy gas flow
Fizika Goreniya i Vzryva, 49:1 (2013), 91–105
-
Simulation of the Ice Formation on a Underwater Gas Pipeline
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 13:4 (2013), 96–101
-
Macrokinetics of fast reactions
Fizika Goreniya i Vzryva, 46:6 (2010), 49–59
-
Investigation of the reaction zone in heterogeneous explosives substances using an electrical conductivity method
Fizika Goreniya i Vzryva, 45:2 (2009), 109–115
-
Natural neutron-fission wave
Fizika Goreniya i Vzryva, 39:2 (2003), 121–127
-
Simulation of convective detonation waves in a porous medium by the lattice gas method
Fizika Goreniya i Vzryva, 37:2 (2001), 94–102
-
“Inviscid finger” instability in regular models of a porous medium
Prikl. Mekh. Tekh. Fiz., 42:2 (2001), 129–140
-
A study of the interaction between the components of heterogeneous explosives by the electrical-conductivity method
Fizika Goreniya i Vzryva, 36:5 (2000), 97–108
-
Model for the coagulation of carbon clusters at high densities and temperatures
Fizika Goreniya i Vzryva, 34:4 (1998), 102–109
-
A convective detonation wave in a porous structure
Fizika Goreniya i Vzryva, 33:1 (1997), 98–106
-
Inertia-limited compaction of a porous medium by a gas piston
Prikl. Mekh. Tekh. Fiz., 37:6 (1996), 156–164
-
Detonation of a highly diluted explosive
Fizika Goreniya i Vzryva, 30:3 (1994), 124–130
-
Isothermal detonation and its stochastic modeling
Fizika Goreniya i Vzryva, 30:3 (1994), 112–124
-
Gas dynamics of cellular automata (review)
Fizika Goreniya i Vzryva, 30:1 (1994), 107–117
-
Fractal structure formation in explosion
Fizika Goreniya i Vzryva, 27:2 (1991), 111–117
-
Detonation in a relaxing gas
Fizika Goreniya i Vzryva, 25:2 (1989), 112–116
-
Temperature of detonation products with explosion in a chamber
Fizika Goreniya i Vzryva, 22:3 (1986), 118–122
-
Two-phase low-speed detonation of a porous explosive
Fizika Goreniya i Vzryva, 20:3 (1984), 89–93
-
Study of detonations in condensed explosives by conduction methods
Fizika Goreniya i Vzryva, 20:3 (1984), 79–83
-
Equations of mechanics of a gas-particle mixture
Prikl. Mekh. Tekh. Fiz., 24:6 (1983), 79–87
-
High-speed gas motion in a porous medium
Prikl. Mekh. Tekh. Fiz., 24:1 (1983), 65–69
-
Electrophysical properties of a detonation plasma; high-speed explosive circuit breakers
Prikl. Mekh. Tekh. Fiz., 18:6 (1977), 19–23
-
Ionization during detonation of solid explosives
Fizika Goreniya i Vzryva, 11:6 (1975), 938–945
-
Measurements of the electrical conductivity profile in the detonation front of solid explosives
Fizika Goreniya i Vzryva, 10:6 (1974), 864–873
-
Magnetohydrodynamic methods of measuring mass velocity and electrical conductivity parameters varying along the direction of the flow
Prikl. Mekh. Tekh. Fiz., 15:4 (1974), 108–113
© , 2026