RUS  ENG
Full version
PEOPLE

Ershov Aleksandr Petrovich

Publications in Math-Net.Ru

  1. Growth of carbon particles during detonation of condensed explosives

    Fizika Goreniya i Vzryva, 61:2 (2025),  41–55
  2. On electromagnetic measurements of particle velocity

    Fizika Goreniya i Vzryva, 59:5 (2023),  53–62
  3. Detonation of ultrafine explosives

    Fizika Goreniya i Vzryva, 57:3 (2021),  111–118
  4. Detonation of an explosive containing nano-sized inclusions

    Fizika Goreniya i Vzryva, 57:1 (2021),  112–119
  5. Diagnostics of the chemical reaction zone in detonation of explosive solids

    Fizika Goreniya i Vzryva, 56:6 (2020),  95–106
  6. Detonation of low-density explosives

    Fizika Goreniya i Vzryva, 55:1 (2019),  128–135
  7. Initiation of PETN detonation by an impactor and a high-enthalpy gas flow

    Fizika Goreniya i Vzryva, 52:1 (2016),  109–115
  8. Physical mechanisms of high-enthalpy initiation

    Fizika Goreniya i Vzryva, 51:6 (2015),  85–95
  9. Evolution of electrical conductivity of emulsion explosives during their detonation conversion

    Fizika Goreniya i Vzryva, 51:3 (2015),  91–97
  10. Regimes of detonation of solid explosives with nonclassical fast kinetics

    Fizika Goreniya i Vzryva, 49:3 (2013),  77–87
  11. Initiation of detonation of a porous high explosive by a high-enthalpy gas flow

    Fizika Goreniya i Vzryva, 49:1 (2013),  91–105
  12. Simulation of the Ice Formation on a Underwater Gas Pipeline

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 13:4 (2013),  96–101
  13. Macrokinetics of fast reactions

    Fizika Goreniya i Vzryva, 46:6 (2010),  49–59
  14. Investigation of the reaction zone in heterogeneous explosives substances using an electrical conductivity method

    Fizika Goreniya i Vzryva, 45:2 (2009),  109–115
  15. Natural neutron-fission wave

    Fizika Goreniya i Vzryva, 39:2 (2003),  121–127
  16. Simulation of convective detonation waves in a porous medium by the lattice gas method

    Fizika Goreniya i Vzryva, 37:2 (2001),  94–102
  17. “Inviscid finger” instability in regular models of a porous medium

    Prikl. Mekh. Tekh. Fiz., 42:2 (2001),  129–140
  18. A study of the interaction between the components of heterogeneous explosives by the electrical-conductivity method

    Fizika Goreniya i Vzryva, 36:5 (2000),  97–108
  19. Model for the coagulation of carbon clusters at high densities and temperatures

    Fizika Goreniya i Vzryva, 34:4 (1998),  102–109
  20. A convective detonation wave in a porous structure

    Fizika Goreniya i Vzryva, 33:1 (1997),  98–106
  21. Inertia-limited compaction of a porous medium by a gas piston

    Prikl. Mekh. Tekh. Fiz., 37:6 (1996),  156–164
  22. Detonation of a highly diluted explosive

    Fizika Goreniya i Vzryva, 30:3 (1994),  124–130
  23. Isothermal detonation and its stochastic modeling

    Fizika Goreniya i Vzryva, 30:3 (1994),  112–124
  24. Gas dynamics of cellular automata (review)

    Fizika Goreniya i Vzryva, 30:1 (1994),  107–117
  25. Fractal structure formation in explosion

    Fizika Goreniya i Vzryva, 27:2 (1991),  111–117
  26. Detonation in a relaxing gas

    Fizika Goreniya i Vzryva, 25:2 (1989),  112–116
  27. Temperature of detonation products with explosion in a chamber

    Fizika Goreniya i Vzryva, 22:3 (1986),  118–122
  28. Two-phase low-speed detonation of a porous explosive

    Fizika Goreniya i Vzryva, 20:3 (1984),  89–93
  29. Study of detonations in condensed explosives by conduction methods

    Fizika Goreniya i Vzryva, 20:3 (1984),  79–83
  30. Equations of mechanics of a gas-particle mixture

    Prikl. Mekh. Tekh. Fiz., 24:6 (1983),  79–87
  31. High-speed gas motion in a porous medium

    Prikl. Mekh. Tekh. Fiz., 24:1 (1983),  65–69
  32. Electrophysical properties of a detonation plasma; high-speed explosive circuit breakers

    Prikl. Mekh. Tekh. Fiz., 18:6 (1977),  19–23
  33. Ionization during detonation of solid explosives

    Fizika Goreniya i Vzryva, 11:6 (1975),  938–945
  34. Measurements of the electrical conductivity profile in the detonation front of solid explosives

    Fizika Goreniya i Vzryva, 10:6 (1974),  864–873
  35. Magnetohydrodynamic methods of measuring mass velocity and electrical conductivity parameters varying along the direction of the flow

    Prikl. Mekh. Tekh. Fiz., 15:4 (1974),  108–113


© Steklov Math. Inst. of RAS, 2026