RUS  ENG
Full version
PEOPLE

Zhukova Nina Ivanovna

Publications in Math-Net.Ru

  1. Existence of Attractors of Foliations, Pseudogroups and Groups of Transformations

    Rus. J. Nonlin. Dyn., 21:1 (2025),  85–102
  2. Dynamical Properties of Continuous Semigroup Actions and Their Products

    Regul. Chaotic Dyn., 30:1 (2025),  141–154
  3. On degree of smooth maps between orbifolds

    Ufimsk. Mat. Zh., 17:4 (2025),  11–25
  4. Groups of basic automorphisms of chaotic Cartan foliations with Eresmann connection

    Izvestiya VUZ. Applied Nonlinear Dynamics, 32:6 (2024),  897–907
  5. Sensitivity and Chaoticity of Some Classes of Semigroup Actions

    Regul. Chaotic Dyn., 29:1 (2024),  174–189
  6. Chaos in topological foliations

    CMFD, 68:3 (2022),  424–450
  7. Chaotic topological foliations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 8,  81–86
  8. The structure of foliations with integrable Ehresmann connection

    Ufimsk. Mat. Zh., 14:1 (2022),  23–40
  9. Complete Lorentzian foliations of codimension 2 on closed manifolds

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 203 (2021),  17–38
  10. The structure of Lorentzian foliations of codimension two

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 11,  87–92
  11. Essential isometry groups of noncompact two-dimensional flat lorenzian orbifolds

    University proceedings. Volga region. Physical and mathematical sciences, 2019, no. 1,  14–28
  12. Graphs of totally geodesic foliations on pseudo-Riemannian manifolds

    Ufimsk. Mat. Zh., 11:3 (2019),  30–45
  13. Riemannian foliations with Ehresmann connection

    Zhurnal SVMO, 20:4 (2018),  395–407
  14. Influence of stratification on the groups of conformal transformations of pseudo-Riemannian orbifolds

    Ufimsk. Mat. Zh., 10:2 (2018),  43–56
  15. Transversely analytical lorentzian foliations of codimension two

    University proceedings. Volga region. Physical and mathematical sciences, 2017, no. 4,  33–45
  16. Foliations of codimension one on a three-dimensional sphere with a countable family of compact attractor leaves

    Nelin. Dinam., 13:4 (2017),  579–584
  17. Foliated models for orbifolds and their applications

    Zhurnal SVMO, 19:4 (2017),  33–44
  18. A criterion for foliations with transverse linear connection to be pseudo-Riemannian

    Zhurnal SVMO, 18:2 (2016),  30–40
  19. Equivalent approaches to the concept of completeness of foliations with transverse linear connection

    Zhurnal SVMO, 17:4 (2015),  14–23
  20. Local and Global Stability of Compact Leaves and Foliations

    Zh. Mat. Fiz. Anal. Geom., 9:3 (2013),  400–420
  21. Attractors of Foliations with Transversal Parabolic Geometry of Rank One

    Mat. Zametki, 93:6 (2013),  944–946
  22. Global attractors of complete conformal foliations

    Mat. Sb., 203:3 (2012),  79–106
  23. Classification of compact Lorentzian $2$-orbifolds with noncompact full isometry groups

    Sibirsk. Mat. Zh., 53:6 (2012),  1292–1309
  24. Compact leaves of structurally stable foliations

    Trudy Mat. Inst. Steklova, 278 (2012),  102–113
  25. Attractors and an analog of the Lichnérowicz conjecture for conformal foliations

    Sibirsk. Mat. Zh., 52:3 (2011),  555–574
  26. Ends of Generic Leaves of Complete Cartan Foliations

    Mat. Zametki, 87:2 (2010),  316–320
  27. Weil foliations

    Nelin. Dinam., 6:1 (2010),  219–231
  28. The isometry groups of Riemannian orbifolds

    Sibirsk. Mat. Zh., 48:4 (2007),  723–741
  29. Minimal Sets of Cartan Foliations

    Trudy Mat. Inst. Steklova, 256 (2007),  115–147
  30. The Ehresmann connection for foliations with singularities, and the global stability of leaves

    Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 10,  45–56
  31. The automorphism groups of finite type $G$-structures on orbifolds

    Sibirsk. Mat. Zh., 44:2 (2003),  263–278
  32. Foliations with locally stable leaves

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 7,  21–31
  33. The graph of a foliation with an Ehresmann connection and the stability of leaves

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 2,  78–81
  34. Foliations that are compatible with systems of differential equations of arbitrary order

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 9,  42–48
  35. A criterion for the stability of leaves of Riemannian foliations with singularities

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 4,  88–91
  36. Global stability of foliations with second-order differential equations on leaves

    Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 8,  81–84
  37. Foliations that are compatible with systems of paths

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 7,  5–13
  38. On minimal sets of Riemannian foliations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 9,  38–45
  39. Global structure of reducible Riemannian manifolds

    Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 10,  60–62
  40. Fiberings on some classes of Riemannian manifolds

    Izv. Vyssh. Uchebn. Zaved. Mat., 1979, no. 7,  93–96
  41. Bound states of atoms in an optical resonance field

    Kvantovaya Elektronika, 6:2 (1979),  363–364
  42. Reducible $k$-sheeted structures

    Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 1,  144–147
  43. Simple bifibrations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 4,  95–104
  44. A category of reducible two-sheeted structures

    Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 3,  103–105
  45. Simple transversal bifibrations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 4,  104–113

  46. To the 75th anniversary of Vyacheslav Zigmundovich Grines

    Zhurnal SVMO, 23:4 (2021),  472–476


© Steklov Math. Inst. of RAS, 2026