RUS  ENG
Full version
PEOPLE

Zarubin Vladimir Stepanovich

Publications in Math-Net.Ru

  1. An Estimate of the Influence of the Effect of Spatial Nonlocality on the Stress-Strain State of a Column

    Rus. J. Nonlin. Dyn., 21:4 (2025),  597–605
  2. Dual variational model of the temperature state of the disk of a unipolar generator

    Prikl. Mekh. Tekh. Fiz., 63:1 (2022),  113–121
  3. Temperature state of a hollow cylinder made of a polymer dielectric with temperature-dependent characteristics

    Prikl. Mekh. Tekh. Fiz., 60:1 (2019),  69–78
  4. The variational form of the mathematical model of a thermal explosion in a solid body with temperature-dependent thermal conductivity

    TVT, 56:2 (2018),  235–240
  5. Application of mathematical modeling to obtaining thermoelastic characteristics of composite materials reinforced with nanostructure inclusions

    Mat. Model., 29:10 (2017),  45–59
  6. Temperature distribution in the spherical shell of a gauge-adjusting satellite

    Prikl. Mekh. Tekh. Fiz., 58:6 (2017),  149–157
  7. Dual variational formulation of the electrostatic problem in an inhomogeneous anisotropic dielectric

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, no. 3,  8–16
  8. The variational approach to estimation of the dielectric permittivity of a unidirectional fibrous composite

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, no. 1,  3–11
  9. Critical and optimal thicknesses of thermal insulation in radiative–convective heat transfer

    TVT, 54:6 (2016),  883–888
  10. Application of the least squares method to the problem of radiation transfer in a spherical cavity

    Mat. Mod. Chisl. Met., 2015, no. 8,  53–65
  11. Radiative-conductive heat transfer in a spherical cavity

    TVT, 53:2 (2015),  243–249
  12. Effective thermal conductivity of a composite in case of inclusions shape deviations from spherical ones

    Mat. Mod. Chisl. Met., 2014, no. 4,  3–17
  13. Mechanical analog modeling of the inelastic non-isothermal deformation processes

    Mat. Mod. Chisl. Met., 2014, no. 3,  25–38
  14. Special features of mathematical modeling of technical instruments

    Mat. Mod. Chisl. Met., 2014, no. 1,  5–17
  15. Two-sided estimates for thermal resistance of an inhomogeneous solid body

    TVT, 51:4 (2013),  578–585
  16. Mathematical simulation of the temperature state of an inhomogeneous body

    TVT, 45:2 (2007),  277–288
  17. Mathematical modeling of thermomechanical processes under intense thermal effect

    TVT, 41:2 (2003),  300–309
  18. A thermomechanical model of a relaxing solid body subjected to time-dependent loading

    Dokl. Akad. Nauk, 345:2 (1995),  193–195
  19. Температурное состояние полупрозрачной сферической оболочки

    Prikl. Mekh. Tekh. Fiz., 5:3 (1964),  175–176
  20. Температурное состояние тонкой сферической оболочки

    Prikl. Mekh. Tekh. Fiz., 4:6 (1963),  169–171

  21. К 150-летию математической подготовки в МГТУ им. Н.Э. Баумана

    Mat. Model., 29:10 (2017),  3–4


© Steklov Math. Inst. of RAS, 2026