|
|
Publications in Math-Net.Ru
-
Operator group generated by a one-dimensional Dirac system
Dokl. RAN. Math. Inf. Proc. Upr., 514:1 (2023), 79–81
-
Equiconvergence of spectral decompositions for Sturm–Liouville operators with a distributional potential in scales of spaces
Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 56–58
-
Spectral analysis of one-dimensional Dirac system with summable potential and Sturm–Liouville operator with distribution coefficients
CMFD, 66:3 (2020), 373–530
-
Asymptotic analysis of solutions of ordinary differential equations with distribution coefficients
Mat. Sb., 211:11 (2020), 129–166
-
On the existence of an operator group generated by the one-dimensional Dirac system
Tr. Mosk. Mat. Obs., 80:2 (2019), 275–294
-
Uniform basis property of the system of root vectors of the Dirac operator
CMFD, 64:1 (2018), 180–193
-
On the basis property of the system of eigenfunctions and associated functions
of a one-dimensional Dirac operator
Izv. RAN. Ser. Mat., 82:2 (2018), 113–139
-
The Calderon–Zygmund operator and its relation to asymptotic estimates for ordinary differential operators
CMFD, 63:4 (2017), 689–702
-
Spectral Properties of the Complex Airy Operator on the Half-Line
Funktsional. Anal. i Prilozhen., 51:1 (2017), 82–98
-
Trace of Order $(-1)$ for a String with Singular Weight
Mat. Zametki, 102:2 (2017), 197–215
-
Reconstruction of the Potential of the Sturm–Liouville Operator from a Finite Set of Eigenvalues and Normalizing Constants
Mat. Zametki, 99:5 (2016), 715–731
-
The Riesz basis property with brackets for Dirac systems with summable potentials
CMFD, 58 (2015), 128–152
-
Interpolation of Nonlinear Maps
Mat. Zametki, 96:6 (2014), 896–904
-
The Dirac Operator with Complex-Valued Summable Potential
Mat. Zametki, 96:5 (2014), 777–810
-
On the Interpolation of Analytic Mappings
Mat. Zametki, 94:4 (2013), 578–581
-
Uniform stability of the inverse Sturm–Liouville problem with respect to the spectral function in the scale of Sobolev spaces
Trudy Mat. Inst. Steklova, 283 (2013), 188–203
-
Inverse Problems for Sturm–Liouville Operators with Potentials in Sobolev Spaces: Uniform Stability
Funktsional. Anal. i Prilozhen., 44:4 (2010), 34–53
-
A Mapping Method in Inverse Sturm–Liouville Problems with Singular Potentials
Trudy Mat. Inst. Steklova, 261 (2008), 243–248
-
On the Properties of Maps Connected with Inverse Sturm–Liouville Problems
Trudy Mat. Inst. Steklova, 260 (2008), 227–247
-
On the eigenvalues of the Sturm–Liouville operator with potentials from Sobolev spaces
Mat. Zametki, 80:6 (2006), 864–884
-
Schrödinger Operators with Singular Potentials
Trudy Mat. Inst. Steklova, 236 (2002), 262–271
-
Trace Formula for Sturm–Liouville Operators with Singular Potentials
Mat. Zametki, 69:3 (2001), 427–442
-
On the Eigenvalues and Eigenfunctions of the Sturm–Liouville Operator with a Singular Potential
Mat. Zametki, 69:2 (2001), 277–285
-
First-order regularised trace of the Sturm–Liouville operator with $\delta$-potential
Uspekhi Mat. Nauk, 55:6(336) (2000), 155–156
-
Sturm–Liouville operators with singular potentials
Mat. Zametki, 66:6 (1999), 897–912
-
Andrei Andreevich Shkalikov (on his seventieth birthday)
Tr. Mosk. Mat. Obs., 80:2 (2019), 133–145
© , 2026