RUS  ENG
Full version
PEOPLE

Savchuk Artem Markovich

Publications in Math-Net.Ru

  1. Operator group generated by a one-dimensional Dirac system

    Dokl. RAN. Math. Inf. Proc. Upr., 514:1 (2023),  79–81
  2. Equiconvergence of spectral decompositions for Sturm–Liouville operators with a distributional potential in scales of spaces

    Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021),  56–58
  3. Spectral analysis of one-dimensional Dirac system with summable potential and Sturm–Liouville operator with distribution coefficients

    CMFD, 66:3 (2020),  373–530
  4. Asymptotic analysis of solutions of ordinary differential equations with distribution coefficients

    Mat. Sb., 211:11 (2020),  129–166
  5. On the existence of an operator group generated by the one-dimensional Dirac system

    Tr. Mosk. Mat. Obs., 80:2 (2019),  275–294
  6. Uniform basis property of the system of root vectors of the Dirac operator

    CMFD, 64:1 (2018),  180–193
  7. On the basis property of the system of eigenfunctions and associated functions of a one-dimensional Dirac operator

    Izv. RAN. Ser. Mat., 82:2 (2018),  113–139
  8. The Calderon–Zygmund operator and its relation to asymptotic estimates for ordinary differential operators

    CMFD, 63:4 (2017),  689–702
  9. Spectral Properties of the Complex Airy Operator on the Half-Line

    Funktsional. Anal. i Prilozhen., 51:1 (2017),  82–98
  10. Trace of Order $(-1)$ for a String with Singular Weight

    Mat. Zametki, 102:2 (2017),  197–215
  11. Reconstruction of the Potential of the Sturm–Liouville Operator from a Finite Set of Eigenvalues and Normalizing Constants

    Mat. Zametki, 99:5 (2016),  715–731
  12. The Riesz basis property with brackets for Dirac systems with summable potentials

    CMFD, 58 (2015),  128–152
  13. Interpolation of Nonlinear Maps

    Mat. Zametki, 96:6 (2014),  896–904
  14. The Dirac Operator with Complex-Valued Summable Potential

    Mat. Zametki, 96:5 (2014),  777–810
  15. On the Interpolation of Analytic Mappings

    Mat. Zametki, 94:4 (2013),  578–581
  16. Uniform stability of the inverse Sturm–Liouville problem with respect to the spectral function in the scale of Sobolev spaces

    Trudy Mat. Inst. Steklova, 283 (2013),  188–203
  17. Inverse Problems for Sturm–Liouville Operators with Potentials in Sobolev Spaces: Uniform Stability

    Funktsional. Anal. i Prilozhen., 44:4 (2010),  34–53
  18. A Mapping Method in Inverse Sturm–Liouville Problems with Singular Potentials

    Trudy Mat. Inst. Steklova, 261 (2008),  243–248
  19. On the Properties of Maps Connected with Inverse Sturm–Liouville Problems

    Trudy Mat. Inst. Steklova, 260 (2008),  227–247
  20. On the eigenvalues of the Sturm–Liouville operator with potentials from Sobolev spaces

    Mat. Zametki, 80:6 (2006),  864–884
  21. Schrödinger Operators with Singular Potentials

    Trudy Mat. Inst. Steklova, 236 (2002),  262–271
  22. Trace Formula for Sturm–Liouville Operators with Singular Potentials

    Mat. Zametki, 69:3 (2001),  427–442
  23. On the Eigenvalues and Eigenfunctions of the Sturm–Liouville Operator with a Singular Potential

    Mat. Zametki, 69:2 (2001),  277–285
  24. First-order regularised trace of the Sturm–Liouville operator with $\delta$-potential

    Uspekhi Mat. Nauk, 55:6(336) (2000),  155–156
  25. Sturm–Liouville operators with singular potentials

    Mat. Zametki, 66:6 (1999),  897–912

  26. Andrei Andreevich Shkalikov (on his seventieth birthday)

    Tr. Mosk. Mat. Obs., 80:2 (2019),  133–145


© Steklov Math. Inst. of RAS, 2026