RUS  ENG
Full version
PEOPLE

Demidov Aleksander Sergeevich

Publications in Math-Net.Ru

  1. Explicit numerically implementable formulas for Poincaré–Steklov operators

    Zh. Vychisl. Mat. Mat. Fiz., 64:2 (2024),  253–262
  2. On explicit numerically realizable formulae for Poincaré–Steklov operators

    Uspekhi Mat. Nauk, 78:6(474) (2023),  181–182
  3. Calculation of $n$th derivative with minimum error based on function’s measurement

    Zh. Vychisl. Mat. Mat. Fiz., 63:9 (2023),  1428–1437
  4. Effective data transmission algorithms for distance learning

    Comp. nanotechnol., 8:4 (2021),  19–27
  5. On the permissible intensity of laser radiation in the optical system and on the technology for measuring the absorption coefficient of its power

    Computer Research and Modeling, 13:5 (2021),  1025–1044
  6. On Numerically Implementable Explicit Formulas for the Solutions to the 2D and 3D Equations $\operatorname{div}(\alpha(w)\nabla w)=0$ and $\operatorname{div}(\beta\nabla w)=0$ with Cauchy Data on an Analytic Boundary

    Funktsional. Anal. i Prilozhen., 55:1 (2021),  65–72
  7. The inverse problem of magneto-electroencephalography is well-posed: it has a unique solution that is stable with respect to perturbations

    Fundam. Prikl. Mat., 21:4 (2016),  17–22
  8. Explicit Formula for the Gradient of a Harmonic Function from Its Analytic Cauchy Data on the Analytic Curve

    Mat. Zametki, 87:1 (2010),  141–143
  9. Functional geometric method for solving free boundary problems for harmonic functions

    Uspekhi Mat. Nauk, 65:1(391) (2010),  3–96
  10. Reduction of a Nonstationary Euler Hydrodynamic Equation to a System of Ordinary Differential Equations in the Plane Problem of Cavitational Flow with Boundary Control

    Mat. Zametki, 86:1 (2009),  37–50
  11. To the problem of the recovery of nonlinearities in equations of mathematical physics

    Tr. Semim. im. I. G. Petrovskogo, 27 (2009),  74–123
  12. Helmholtz–Kirchhoff method and boundary control of a plane flow

    Fundam. Prikl. Mat., 12:4 (2006),  65–77
  13. Schwartz Alternating Method for Elliptic Boundary-Value Problems Satisfying the Maximum Principle

    Mat. Zametki, 78:4 (2005),  622–624
  14. On the evolution of a weak perturbation of a circle in the problem of a Hele–Shaw flow

    Uspekhi Mat. Nauk, 57:6(348) (2002),  177–178
  15. On the inverse problem for the Grad–Shafranov equation with affine right-hand side

    Uspekhi Mat. Nauk, 56:3(339) (2001),  161–162
  16. On the inverse problem for the Grad–Shafranov equation with affine right-hand side

    Uspekhi Mat. Nauk, 55:6(336) (2000),  131–132
  17. The finite points model of the Stokes–Leibenson problem for the Hele-Shaw flow

    Fundam. Prikl. Mat., 5:1 (1999),  67–84
  18. Nonnegative trigonometric polynomials with fixed mean passing through given points

    Mat. Zametki, 62:3 (1997),  468–471
  19. Complete asymptotics of the solution of the Dirichlet problem for the two-dimensional Laplace equation with rapidly oscillating boundary data

    Dokl. Akad. Nauk, 346:6 (1996),  732–734
  20. An inverse problem with a free boundary in equilibrium plasma theory

    Differ. Uravn., 30:6 (1994),  1034–1038
  21. Mathematical experiment on heat and mass transfer in the evaporator zone of heat pipes

    TVT, 30:3 (1992),  566–572
  22. Existence, nonexistence and regularity theorems in a problem with a free boundary

    Mat. Sb. (N.S.), 122(164):1(9) (1983),  64–81
  23. Asymptotic behavior of the solution of a boundary value problem for elliptic pseudodifferential equations with a small parameter multiplying the highest operator

    Tr. Mosk. Mat. Obs., 32 (1975),  119–146
  24. Elliptic pseudodifferential boundary value problems with a small parameter in the coefficient of the leading operator

    Mat. Sb. (N.S.), 91(133):3(7) (1973),  421–444
  25. Boundary effects and the asymptotic nature of the degeneration of certain elliptic pseudodifferential operators

    Uspekhi Mat. Nauk, 27:1(163) (1972),  245–246
  26. Asymptotic behavior of the solutions of boundary value problems for a linear second order elliptic equation with coefficients that have a “burst”

    Tr. Mosk. Mat. Obs., 23 (1970),  77–112

  27. Analysis of the prospects for the iot technology in the electric power industry

    Comp. nanotechnol., 8:4 (2021),  9–18
  28. Marko Iosifovich Vishik (obituary)

    Uspekhi Mat. Nauk, 68:2(410) (2013),  197–200
  29. Vladimir M. Tikhomirov

    Mosc. Math. J., 5:1 (2005),  295
  30. Mark Iosifovich Vishik (on his 75th birthday)

    Uspekhi Mat. Nauk, 52:4(316) (1997),  225–232


© Steklov Math. Inst. of RAS, 2026