RUS  ENG
Full version
PEOPLE

Freidlin Mark Iosifovich

Publications in Math-Net.Ru

  1. Homogenization of diffusion processes in tubular domains

    Uspekhi Mat. Nauk, 62:3(375) (2007),  219–220
  2. Autonomous random perturbations of dynamical systems

    Uspekhi Mat. Nauk, 57:3(345) (2002),  167–168
  3. On the motion of light particles perturbed by noise

    Uspekhi Mat. Nauk, 55:3(333) (2000),  189–190
  4. Image Processing for Plane Domains: Change-Point Problems for the Domain's Area

    Probl. Peredachi Inf., 31:1 (1995),  33–55
  5. On the propagation of concentration waves in periodic and random media

    Dokl. Akad. Nauk SSSR, 249:3 (1979),  521–525
  6. Propagation of a concentration wave in the presence of random motion associated with the growth of a substance

    Dokl. Akad. Nauk SSSR, 246:3 (1979),  544–548
  7. Degenerate diffusion processes and differential equations with a small parameter

    Uspekhi Mat. Nauk, 33:6(204) (1978),  233–234
  8. The averaging principle and theorems on large deviations

    Uspekhi Mat. Nauk, 33:5(203) (1978),  107–160
  9. Sublimiting distributions and stabilization of solutions of parabolic equations with a small parameter

    Dokl. Akad. Nauk SSSR, 235:5 (1977),  1042–1045
  10. Theorems on large deviations, and stability under random perturbations

    Dokl. Akad. Nauk SSSR, 235:2 (1977),  253–256
  11. Fluctuations in dynamical systems with averaging

    Dokl. Akad. Nauk SSSR, 226:2 (1976),  273–276
  12. Boundary value problems with a mall parameter for a iffusion process with reflection

    Uspekhi Mat. Nauk, 31:5(191) (1976),  241–242
  13. On stability of highly reliable systems

    Teor. Veroyatnost. i Primenen., 20:3 (1975),  584–595
  14. Probabilities of large deviations for randomly disturbed systems and stochastic stability

    Teor. Veroyatnost. i Primenen., 18:4 (1973),  818–824
  15. The action functional for a class of stochastic processes

    Teor. Veroyatnost. i Primenen., 17:3 (1972),  536–541
  16. Some problems concerning stability under small stochastic perturbations

    Teor. Veroyatnost. i Primenen., 17:2 (1972),  281–295
  17. On small random perturbations of dynamical systems

    Uspekhi Mat. Nauk, 25:1(151) (1970),  3–55
  18. The limiting behavior of the invariant measure under small perturbations of a dynamical system

    Dokl. Akad. Nauk SSSR, 188:1 (1969),  13–16
  19. Small random perturbations of a dynamical system with stable equilibrium position

    Dokl. Akad. Nauk SSSR, 187:3 (1969),  506–509
  20. The motion of a diffusing particle against the flow

    Uspekhi Mat. Nauk, 24:5(149) (1969),  229–230
  21. Existence “in the large” of smooth solutions of degenerate quasilinear equations

    Mat. Sb. (N.S.), 78(120):3 (1969),  332–348
  22. On degenerating elliptic equations

    Teor. Veroyatnost. i Primenen., 14:1 (1969),  138–142
  23. On the smoothness of solutions of degenerate elliptic equations

    Izv. Akad. Nauk SSSR Ser. Mat., 32:6 (1968),  1391–1413
  24. The stabilization of the solutions of certain parabolic equations and systems

    Mat. Zametki, 3:1 (1968),  85–92
  25. The global existence of smooth solutions for degenerate quasilinear equations

    Uspekhi Mat. Nauk, 23:3(141) (1968),  187–188
  26. On factorization of a nonnegatively definite matrix

    Teor. Veroyatnost. i Primenen., 13:2 (1968),  375–378
  27. A certain class of degenerate quasilinear equations

    Dokl. Akad. Nauk SSSR, 177:5 (1967),  1015–1018
  28. Elliptic equations in unbounded regions

    Dokl. Akad. Nauk SSSR, 172:6 (1967),  1286–1289
  29. Quasilinear parabolic equations and measures in function space

    Funktsional. Anal. i Prilozhen., 1:3 (1967),  74–82
  30. Markov processes and differential equations

    Itogi Nauki. Ser. Teor. Veroyatn. Mat. Stat. Teor. Kibern. 1966, 1967,  7–58
  31. A probabilistic approach to the theory of elliptic quasilinear equations

    Uspekhi Mat. Nauk, 22:5(137) (1967),  183–184
  32. On small perturbations of coefficients of a diffusion process

    Teor. Veroyatnost. i Primenen., 12:3 (1967),  536–540
  33. Formulation of boundary value problems for degenerating elliptic equations

    Dokl. Akad. Nauk SSSR, 170:2 (1966),  282–285
  34. The exterior Dirichlet problem for the class of bounded functions

    Teor. Veroyatnost. i Primenen., 11:3 (1966),  463–471
  35. Diffusion processes and the small parameter method in elliptic equations with discontinuous coefficients

    Izv. Akad. Nauk SSSR Ser. Mat., 29:5 (1965),  1005–1036
  36. A Note on the Generalized Solution of Dirichiefs Problem

    Teor. Veroyatnost. i Primenen., 10:1 (1965),  175–178
  37. A priori bounds for solutions of degenerate elliptic equations

    Dokl. Akad. Nauk SSSR, 158:2 (1964),  281–283
  38. Dirichlet's Problem for an Equation with Periodical Coefficients Depending on a Small Parameter

    Teor. Veroyatnost. i Primenen., 9:1 (1964),  133–139
  39. Diffusion Processes with Reflection and a Third Boundary Value Problem

    Teor. Veroyatnost. i Primenen., 8:1 (1963),  80–87
  40. A Dirichlet problem for an equation with a small parameter and discontinuous coefficients

    Dokl. Akad. Nauk SSSR, 144:3 (1962),  501–504
  41. A mixed boundary-value problem for second-order elliptic differential equations with a small parameter

    Dokl. Akad. Nauk SSSR, 143:6 (1962),  1300–1303
  42. Ito's stochastic equations and degenerate elliptic equations

    Izv. Akad. Nauk SSSR Ser. Mat., 26:5 (1962),  653–676
  43. On the Structure of the Infinitesimal $\sigma$-Algebra of a Gaussian Process

    Teor. Veroyatnost. i Primenen., 7:2 (1962),  204–208
  44. Some properties of diffusion processes depending on a parameter

    Dokl. Akad. Nauk SSSR, 138:3 (1961),  508–511

  45. Boris Rufimovich Vainberg (on his 80th birthday)

    Uspekhi Mat. Nauk, 74:1(445) (2019),  189–194
  46. Igor' Vladimirovich Girsanov (obituary)

    Teor. Veroyatnost. i Primenen., 12:3 (1967),  532–535


© Steklov Math. Inst. of RAS, 2026