RUS  ENG
Full version
PEOPLE

Aigunov Gasan Abdullaevich

Publications in Math-Net.Ru

  1. Estimates for the Eigenfunctions of the Regge Problem

    Mat. Zametki, 92:1 (2012),  141–144
  2. Asymptotic behaviour of orthonormal eigenfunctions for a problem of Regge type with integrable positive weight function

    Uspekhi Mat. Nauk, 64:6(390) (2009),  169–170
  3. On a Liouville-type equation with one interior singular point

    Uspekhi Mat. Nauk, 64:1(385) (2009),  135–136
  4. Asymptotics of eigenvalues and estimate for the kernel of the resolvent in an irregular boundary value problem generated by a $2n$-th order differential equation on the interval $[0,a]$

    Uspekhi Mat. Nauk, 63:1(379) (2008),  157–158
  5. Some questions on approximation of functions of several variables by Fourier sums in the space $L_2((a,b)^n;p(x))$

    Uspekhi Mat. Nauk, 59:6(360) (2004),  201–202
  6. The boundedness of orthonormalised eigenfunctions of a non-linear Sturm–Liouville type boundary-value problem with weight function unbounded from above on a finite interval

    Uspekhi Mat. Nauk, 57:1(343) (2002),  145–146
  7. The boundedness of the orthonormal eigenfunctions of a certain class of non-linear Sturm–Liouville type operators with a weight function of unbounded variation on a finite interval

    Uspekhi Mat. Nauk, 55:4(334) (2000),  213–214
  8. On the maximal possible rates of growth of solutions of the Cauchy problem and normalized eigenfunctions of a class of non-linear operators of Sturm–Liouville type with a continuous positive weight function

    Uspekhi Mat. Nauk, 55:2(332) (2000),  129–130
  9. Asymptotic behavior of the normalized eigenfunctions of an operator of Sturm–Liouville type for partial differential equations in an $N$-dimensional ball

    Mat. Zametki, 65:4 (1999),  622–625
  10. On the spectrum of a class of one-dimensional Schrödinger type operators with generalized potential

    Mat. Zametki, 62:4 (1997),  617–619
  11. A problem on the asymptotics of normalized eigenfunctions of the Sturm–Liouville operator on a finite interval

    Uspekhi Mat. Nauk, 52:6(318) (1997),  147–148
  12. On the question of maximal rate of growth of the system of eigenfunctions of the Sturm–Liouville operator with a continuous weight function on a finite interval

    Uspekhi Mat. Nauk, 52:3(315) (1997),  161–162
  13. On a criterion for uniform boundedness of normalized eigenfunctions of the Sturm–Liouville operator with a positive weight function on a finite interval

    Uspekhi Mat. Nauk, 52:2(314) (1997),  149–150
  14. On the boundedness problem for the set of orthonormal eigenfunctions for a class of Sturm–Liouville operators with a weight function of unbounded variation on a finite interval

    Mat. Zametki, 60:3 (1996),  434–437
  15. On the boundedness of orthonormal eigenfunctions of a class of Sturm–Liouville operators with a weight function of unbounded variation on a finite interval

    Uspekhi Mat. Nauk, 51:2(308) (1996),  143–144
  16. On the problem of the estimation of the normalized eigenfunctions of the Sturm–Liouville operator with a positive weight function on a finite segment

    Uspekhi Mat. Nauk, 50:4(304) (1995),  157–158
  17. On a boundary value problem induced by a nonselfadjoint differential operator of $2n$th order on a semiaxis

    Dokl. Akad. Nauk SSSR, 213:5 (1973),  1001–1004


© Steklov Math. Inst. of RAS, 2026