|
|
Publications in Math-Net.Ru
-
Estimates for the Eigenfunctions of the Regge Problem
Mat. Zametki, 92:1 (2012), 141–144
-
Asymptotic behaviour of orthonormal eigenfunctions for a problem of Regge type with integrable positive weight function
Uspekhi Mat. Nauk, 64:6(390) (2009), 169–170
-
On a Liouville-type equation with one interior singular point
Uspekhi Mat. Nauk, 64:1(385) (2009), 135–136
-
Asymptotics of eigenvalues and estimate for the kernel of the resolvent in an irregular boundary value problem generated by a $2n$-th order differential equation on the interval $[0,a]$
Uspekhi Mat. Nauk, 63:1(379) (2008), 157–158
-
Some questions on approximation of functions of several variables by Fourier sums in the space $L_2((a,b)^n;p(x))$
Uspekhi Mat. Nauk, 59:6(360) (2004), 201–202
-
The boundedness of orthonormalised eigenfunctions of a non-linear Sturm–Liouville type boundary-value problem with weight function unbounded from above on a finite interval
Uspekhi Mat. Nauk, 57:1(343) (2002), 145–146
-
The boundedness of the orthonormal eigenfunctions of a certain class of non-linear Sturm–Liouville type operators with a weight function of unbounded variation on a finite interval
Uspekhi Mat. Nauk, 55:4(334) (2000), 213–214
-
On the maximal possible rates of growth of solutions of the Cauchy problem and normalized eigenfunctions of a class of non-linear operators of Sturm–Liouville type with a continuous positive weight function
Uspekhi Mat. Nauk, 55:2(332) (2000), 129–130
-
Asymptotic behavior of the normalized eigenfunctions of an operator of Sturm–Liouville type for partial differential equations in an $N$-dimensional ball
Mat. Zametki, 65:4 (1999), 622–625
-
On the spectrum of a class of one-dimensional Schrödinger type operators with generalized potential
Mat. Zametki, 62:4 (1997), 617–619
-
A problem on the asymptotics of normalized eigenfunctions of the Sturm–Liouville operator on a finite interval
Uspekhi Mat. Nauk, 52:6(318) (1997), 147–148
-
On the question of maximal rate of growth of the system of eigenfunctions of the Sturm–Liouville operator with a continuous weight function on a finite interval
Uspekhi Mat. Nauk, 52:3(315) (1997), 161–162
-
On a criterion for uniform boundedness of normalized eigenfunctions of the Sturm–Liouville operator with a positive weight function on a finite interval
Uspekhi Mat. Nauk, 52:2(314) (1997), 149–150
-
On the boundedness problem for the set of orthonormal eigenfunctions for a class of Sturm–Liouville operators with a weight function of unbounded variation on a finite interval
Mat. Zametki, 60:3 (1996), 434–437
-
On the boundedness of orthonormal eigenfunctions of a class of Sturm–Liouville operators with a weight function of unbounded variation on a finite interval
Uspekhi Mat. Nauk, 51:2(308) (1996), 143–144
-
On the problem of the estimation of the normalized eigenfunctions of the Sturm–Liouville operator with a positive weight function on a finite segment
Uspekhi Mat. Nauk, 50:4(304) (1995), 157–158
-
On a boundary value problem induced by a nonselfadjoint differential operator of $2n$th order on a semiaxis
Dokl. Akad. Nauk SSSR, 213:5 (1973), 1001–1004
© , 2026