RUS  ENG
Full version
PEOPLE

Vasil'eva Adelaida Borisovna

Publications in Math-Net.Ru

  1. Boundary layers in the solution of singularly perturbed boundary value problem with a degenerate equation having roots of multiplicity two

    Zh. Vychisl. Mat. Mat. Fiz., 51:3 (2011),  379–383
  2. Singularly perturbed problems with boundary and internal layers

    Trudy Mat. Inst. Steklova, 268 (2010),  268–283
  3. Two-point boundary value problem for a singularly perturbed equation with a reduced equation having multiple roots

    Zh. Vychisl. Mat. Mat. Fiz., 49:6 (2009),  1067–1079
  4. On certain alternating boundary-layer solutions to singularly perturbed parabolic equations

    Zh. Vychisl. Mat. Mat. Fiz., 48:4 (2008),  651–659
  5. On boundary conditions influence for variable type boundary layer solution

    Mat. Model., 19:4 (2007),  103–115
  6. Solutions to a singularly perturbed parabolic equation with internal and boundary layers depending on stretched variables of different orders

    Zh. Vychisl. Mat. Mat. Fiz., 47:3 (2007),  424–437
  7. Alternating boundary layer type solutions of some singularly perturbed periodic parabolic equations with Dirichlet and Robin boundary conditions

    Zh. Vychisl. Mat. Mat. Fiz., 47:2 (2007),  222–233
  8. On systems of two singularly perturbed quasilinear second-order equations

    Fundam. Prikl. Mat., 12:5 (2006),  21–28
  9. Equivalence of Two Sets of Transition Points Corresponding to Solutions with Interior Transition Layers

    Mat. Zametki, 79:1 (2006),  120–126
  10. On parabolic equations with a small parameter

    Zh. Vychisl. Mat. Mat. Fiz., 46:5 (2006),  799–804
  11. On a system of singularly perturbed second-order quasilinear ordinary differential equations in the critical cases

    Zh. Vychisl. Mat. Mat. Fiz., 46:4 (2006),  593–604
  12. On a system of two singularly perturbed second-order quasilinear equations in the critical case

    Zh. Vychisl. Mat. Mat. Fiz., 45:10 (2005),  1818–1825
  13. On the stability of a steplike contrast structure for a parabolic equation

    Zh. Vychisl. Mat. Mat. Fiz., 45:3 (2005),  448–461
  14. Change of the type of contrast structures in parabolic Neumann problems

    Zh. Vychisl. Mat. Mat. Fiz., 45:1 (2005),  41–55
  15. Contrast structures of variable type in quasilinear parabolic equations

    Differ. Uravn., 40:10 (2004),  1358–1373
  16. On a step-like contrast structure for a problem of the calculus of variations

    Zh. Vychisl. Mat. Mat. Fiz., 44:7 (2004),  1271–1280
  17. On a system of two singularly-perturbed second order quasilinear equations

    Zh. Vychisl. Mat. Mat. Fiz., 44:4 (2004),  650–661
  18. Investigation of alternating contrast structures

    Trudy Inst. Mat. i Mekh. UrO RAN, 9:1 (2003),  45–49
  19. On periodic solutions of a parabolic problem with a small parameter at the derivatives

    Zh. Vychisl. Mat. Mat. Fiz., 43:7 (2003),  975–986
  20. On singularities of solutions of singularly perturbed boundary value problems when the roots of a degenerate equation merge

    Zh. Vychisl. Mat. Mat. Fiz., 43:4 (2003),  554–561
  21. A Singularly Perturbed Boundary Value Problem for a Second-Order Differential Equation Whose Right-Hand Side Is a Quadratic Function of the Derivative of the Unknown Function

    Differ. Uravn., 38:6 (2002),  724–734
  22. On some periodic contrast structures

    Mat. Model., 13:12 (2001),  43–45
  23. Andrey Nikolaevich Tikhonov and his school for singular perturbation problem

    Mat. Model., 13:12 (2001),  6–9
  24. Internal layer in a boundary value problem for a system of two singularly perturbed second-order equations with the same order of singularity

    Zh. Vychisl. Mat. Mat. Fiz., 41:7 (2001),  1067–1077
  25. Periodic step-like contrast structures for a singularly perturbed parabolic equation

    Differ. Uravn., 36:2 (2000),  209–218
  26. On a periodic solution of the parabolic singularly perturbed equation with different powers of a small parameter multiplying the first and second derivatives

    Zh. Vychisl. Mat. Mat. Fiz., 40:8 (2000),  1192–1205
  27. Steplike contrast structures for a singularly perturbed elliptic equation in an annulus

    Zh. Vychisl. Mat. Mat. Fiz., 40:1 (2000),  122–135
  28. Contrast structures with steps in systems of singularly perturbed equations

    Fundam. Prikl. Mat., 5:3 (1999),  791–800
  29. Contrast structures in systems of three singularly perturbed equations

    Zh. Vychisl. Mat. Mat. Fiz., 39:12 (1999),  2007–2018
  30. Singularly perturbed second-order equation with small parameters multiplying the first and second derivatives

    Zh. Vychisl. Mat. Mat. Fiz., 39:9 (1999),  1504–1512
  31. Alternating contrast structures

    Zh. Vychisl. Mat. Mat. Fiz., 39:8 (1999),  1296–1304
  32. On contrast structures of variable type

    Zh. Vychisl. Mat. Mat. Fiz., 39:5 (1999),  792–800
  33. On the internal layer in solutions to singular perturbed problems in the case of a change in stability

    Zh. Vychisl. Mat. Mat. Fiz., 39:3 (1999),  451–457
  34. On the theory of alternating contrast structures

    Zh. Vychisl. Mat. Mat. Fiz., 38:9 (1998),  1534–1543
  35. On a contrast steplike structure for a class of second-order nonlinear singularly perturbed equations

    Zh. Vychisl. Mat. Mat. Fiz., 38:6 (1998),  938–947
  36. On contrast structures that arise when the type of stability of a root of a degenerate equation changes

    Zh. Vychisl. Mat. Mat. Fiz., 38:5 (1998),  777–787
  37. Asymptotic Theory of Contrasting Structures. A Survey

    Avtomat. i Telemekh., 1997, no. 7,  4–32
  38. Contrast structure in the systems of singulary perturbed equations

    Fundam. Prikl. Mat., 3:4 (1997),  1117–1133
  39. Contrast structure of step type for initial value problem

    Fundam. Prikl. Mat., 3:2 (1997),  359–372
  40. Contrast structures for a system of singularly perturbed equations

    Zh. Vychisl. Mat. Mat. Fiz., 37:1 (1997),  74–84
  41. On the stability of periodic contrast structures in the spatially two-dimensional case

    Differ. Uravn., 32:10 (1996),  1355–1361
  42. An internal transition layer in a singularly perturbed initial-value problem

    Zh. Vychisl. Mat. Mat. Fiz., 36:9 (1996),  105–111
  43. On a contrast structure of step type for a system of two second-order singularly perturbed equations

    Zh. Vychisl. Mat. Mat. Fiz., 36:5 (1996),  75–89
  44. On the solution of singular perturbed problems having boundary layer of spike type

    Fundam. Prikl. Mat., 1:1 (1995),  109–122
  45. The asymptotic method of investigation of contrast structures and it application to the theory of hydromagnetic dynamo

    Mat. Model., 7:2 (1995),  61–71
  46. Step-like contrasting structures for a singularly perturbed quasilinear second-order differential equation

    Zh. Vychisl. Mat. Mat. Fiz., 35:4 (1995),  520–531
  47. On the contrast structures for stationary equation of Korteweg–de Vries type

    Mat. Model., 6:10 (1994),  77–87
  48. Step-like contrasting structures for a system of singularly perturbed equations

    Zh. Vychisl. Mat. Mat. Fiz., 34:10 (1994),  1401–1411
  49. Contrasting structures in systems of singularly perturbed equations

    Zh. Vychisl. Mat. Mat. Fiz., 34:8-9 (1994),  1168–1178
  50. The region of influence of a stationary solution of a singularly perturbed parabolic equation

    Zh. Vychisl. Mat. Mat. Fiz., 33:6 (1993),  874–883
  51. Contrast structures with two step-like transition layers and their stability

    Zh. Vychisl. Mat. Mat. Fiz., 32:10 (1992),  1582–1593
  52. Contrast structures in equations of elliptic type

    Zh. Vychisl. Mat. Mat. Fiz., 32:7 (1992),  1007–1015
  53. On the forming of solution of the contrast structure type to singularly perturbed parabolic equation for large values of time variable

    Mat. Model., 3:9 (1991),  87–94
  54. Contribution to the stability problem for the contrast structures

    Mat. Model., 3:4 (1991),  114–123
  55. Asymptotic approximation of a periodic solution of the second boundary-value problem for systems with small diffusion

    Mat. Zametki, 49:5 (1991),  32–36
  56. Small-parameter asymptotic expansions of the solutions of some problems for parabolic equations

    Zh. Vychisl. Mat. Mat. Fiz., 31:9 (1991),  1328–1337
  57. Contribution то the stability problem for the solutions belonging to the contrast structures

    Mat. Model., 2:1 (1990),  119–125
  58. On the existence of solutions of the contrast structure type

    Zh. Vychisl. Mat. Mat. Fiz., 30:1 (1990),  72–86
  59. An asymptotic approach to the synthesis of a semiconductor device

    Mat. Model., 1:9 (1989),  43–63
  60. The asymptotic of periodic solutions of some systems with small diffusion

    Mat. Model., 1:4 (1989),  150–154
  61. The asymptotic theory of contrasting spatial structures

    Zh. Vychisl. Mat. Mat. Fiz., 28:3 (1988),  346–361
  62. On an inner transition layer in a problem of the theory of semiconductor films

    Zh. Vychisl. Mat. Mat. Fiz., 28:2 (1988),  224–236
  63. A singularly perturbed system of two first order partial differential equations in a conditionally stable case

    Differ. Uravn., 23:2 (1987),  344–345
  64. Asymptotic of a solution of contrast-structure type

    Mat. Zametki, 42:6 (1987),  831–841
  65. Bifurcation of self-oscillations of nonlinear parabolic equations with small diffusion

    Mat. Sb. (N.S.), 130(172):4(8) (1986),  488–499
  66. Periodic solutions of a singularly perturbed equation of parabolic type

    Dokl. Akad. Nauk SSSR, 285:1 (1985),  15–19
  67. Periodic solutions of singularly perturbed equations of parabolic type

    Differ. Uravn., 21:10 (1985),  1755–1760
  68. The method of boundary layer functions

    Differ. Uravn., 21:10 (1985),  1662–1669
  69. The interior transition layer in the solution of a system of first-order partial differential equations

    Differ. Uravn., 21:9 (1985),  1537–1544
  70. Periodic solutions of singularly perturbed equations of elliptic type

    Differ. Uravn., 21:6 (1985),  1013–1020
  71. Periodic solutions of some singularly-perturbed equations of parabolic type

    Zh. Vychisl. Mat. Mat. Fiz., 25:4 (1985),  609–614
  72. Periodic solutions of equations of parabolic type with small parameters

    Differ. Uravn., 19:12 (1983),  2076–2081
  73. Periodic solutions of equations of elliptic type with small parameters

    Differ. Uravn., 18:12 (1982),  2174–2178
  74. On the theory of periodic solutions of partial differential equations with small parameters

    Differ. Uravn., 18:5 (1982),  889–892
  75. Singular perturbations in problems of optimal control

    Itogi Nauki i Tekhn. Ser. Mat. Anal., 20 (1982),  3–77
  76. An investigation of a nonlinear optimal control problem by the methods of singular perturbation theory

    Dokl. Akad. Nauk SSSR, 257:6 (1981),  1295–1298
  77. The critical case with a Jordan chain in a singularly perturbed nonlinear problem

    Differ. Uravn., 17:10 (1981),  1806–1816
  78. Application of singular perturbation theory to the study of mathematical problems of mass transfer in multicomponent systems

    Dokl. Akad. Nauk SSSR, 251:3 (1980),  529–534
  79. Determination of the structure of a generalized solution of a nonlinear optimal control problem

    Dokl. Akad. Nauk SSSR, 250:3 (1980),  525–528
  80. An internal transition layer in a one-sided stable singularly perturbed system

    Differ. Uravn., 15:10 (1979),  1748–1753
  81. The stable initial manifold for an integro-differential equation in the critical case

    Differ. Uravn., 13:11 (1977),  2063–2069
  82. A boundary value problem for singularly perturbed differential and difference systems when the unperturbed system lies on the spectrum

    Differ. Uravn., 13:4 (1977),  738–742
  83. Singularly perturbed systems in the theory of semiconductors

    Zh. Vychisl. Mat. Mat. Fiz., 17:2 (1977),  339–348
  84. A certain method of investigating the solutions of difference equations of oscillation type in the case of a small step

    Differ. Uravn., 12:10 (1976),  1903–1905
  85. Asymptotic behavior of the solution of a certain nonlinear problem with a singular boundary condition

    Differ. Uravn., 12:10 (1976),  1758–1769
  86. Singularly perturbed systems that contain an indeterminacy in the degeneracy

    Differ. Uravn., 12:10 (1976),  1748–1757
  87. The development of the theory of ordinary differential equations with a small parameter multiplying the highest derivative during the period 1966–1976

    Uspekhi Mat. Nauk, 31:6(192) (1976),  102–122
  88. Singularly perturbed systems containing indeterminacy in the case of degeneracy

    Dokl. Akad. Nauk SSSR, 224:1 (1975),  19–22
  89. The resemblance between conditionally stable singularly perturbed systems and singularly perturbed systems with a zero characteristic number

    Differ. Uravn., 11:10 (1975),  1754–1764
  90. The extension of the class of conditionally stable singularly perturbed systems that admit application of the method of boundary functions

    Differ. Uravn., 11:7 (1975),  1159–1174
  91. Conditionally stable singularly perturbed systems with singularities in the boundary conditons

    Differ. Uravn., 11:2 (1975),  227–238
  92. Conditionally stable singularly perturbed systems

    Dokl. Akad. Nauk SSSR, 216:1 (1974),  17–20
  93. Certain critical cases for equations of neutral type with small lag

    Differ. Uravn., 9:5 (1973),  945–946
  94. On the question of solutions that are close to continuous ones in a system of conditionally stable type with a small parameter multiplying the derivatives

    Differ. Uravn., 8:9 (1972),  1560–1568
  95. The influence of local perturbations on the solution of a boundary value problem

    Differ. Uravn., 8:4 (1972),  581–589
  96. Linear difference systems with small lag

    Differ. Uravn., 6:12 (1970),  2267–2269
  97. Differential and difference systems of equations with a small parameter in the case when the unperturbed (degenerate) system is situated on the spectrum

    Differ. Uravn., 6:4 (1970),  650–664
  98. Asymptotic methods in the theory of ordinary differential equations

    Itogi Nauki. Ser. Matematika. Mat. Anal. 1967, 1969,  5–73
  99. Periodic solutions of systems of differential equations with a small parameter at the derivatives, close to discontinuous ones

    Dokl. Akad. Nauk SSSR, 178:4 (1968),  767–770
  100. Investigation of the asymptotic properties of a differential equation encountered in certain kinetics problems

    Differ. Uravn., 4:3 (1968),  397–408
  101. A question on the asymptotic solution of an optimal control problem

    Differ. Uravn., 3:11 (1967),  1895–1902
  102. Asymptotics of the solution of a Cauchy problem for an integro-differential equation with a small parameter in front of the derivative

    Sibirsk. Mat. Zh., 7:1 (1966),  61–69
  103. Certain problems on eigenvalues for integro-differential equations with a small parameter coefficient for the higher derivative

    Differ. Uravn., 1:9 (1965),  1190–1203
  104. On integral perturbations in differential equations with high frequency oscillations of the solutions

    Differ. Uravn., 1:6 (1965),  717–730
  105. Asymptotic behaviour of the solution of an integro-differential equation with a small parameter multiplying the derivative

    Zh. Vychisl. Mat. Mat. Fiz., 4:supplement to № 4 (1964),  183–191
  106. Asymptotic behaviour of solutions to certain problems involving non-linear differential equations containing a small parameter multiplying the highest derivatives

    Uspekhi Mat. Nauk, 18:3(111) (1963),  15–86
  107. An equation of neutral type with small lag

    Dokl. Akad. Nauk SSSR, 145:3 (1962),  495–497
  108. Asymptotic formulas for the solutions of ordinary differential equations with a small parameter on the highest derivative, which are valid over a semi-infinite interval

    Dokl. Akad. Nauk SSSR, 142:4 (1962),  769–772
  109. Asymptotic methods in the theory of ordinary differential equations with small parameters multiplying the highest derivatives

    Uspekhi Mat. Nauk, 17:4(106) (1962),  225–231
  110. The asymptotic behavior of the solutions of certain boundary value problems for equations with a small parameter in the highest derivative

    Dokl. Akad. Nauk SSSR, 135:6 (1960),  1303–1306
  111. Asymptotic formulas for the solution of a boundary value problem in the case of a second order equation containing a small parameter in the term containing the highest derivative

    Dokl. Akad. Nauk SSSR, 135:5 (1960),  1035–1037
  112. Construction of uniform approximations to solutions of systems of differential equations with a small parameter in the highest derivative

    Mat. Sb. (N.S.), 50(92):1 (1960),  43–58
  113. On repeated differentiation with respect to the parameter of solutions of systems of ordinary differential equations with a small parameter in the derivative

    Mat. Sb. (N.S.), 48(90):3 (1959),  311–334
  114. The asymptotic behaviour of solutions to some boundary problems for quasilinear equations involving a small parameter in the highest derivative term

    Dokl. Akad. Nauk SSSR, 123:4 (1958),  583–586
  115. On reiterated differentiation of solutions of simultaneous ordinary differential equations with a small parameter in the derivative term

    Dokl. Akad. Nauk SSSR, 119:1 (1958),  9–11
  116. On differential equations containing small parameters

    Mat. Sb. (N.S.), 31(73):3 (1952),  587–644
  117. On the differentiability of the solutions of differential equations containing a small parameter

    Mat. Sb. (N.S.), 28(70):1 (1951),  131–146

  118. Valentin Fedorovich Butuzov (on his 60th birthday)

    Uspekhi Mat. Nauk, 54:6(330) (1999),  179–181
  119. Contrast structures in singularly perturbed problems

    Fundam. Prikl. Mat., 4:3 (1998),  799–851
  120. Конференция “Теория и приложения методов малого параметра”, посвященная 90-летию со дня рождения академика А. Н. Тихонова (Обнинск, 2–6 июля 1998 г.)

    Differ. Uravn., 32:10 (1996),  1436
  121. Aleksei Georgievich Sveshnikov (on his seventieth birthday)

    Uspekhi Mat. Nauk, 50:1(301) (1995),  219–220
  122. Аll-union workshop on theory of control systems with separable motions

    Avtomat. i Telemekh., 1980, no. 3,  191–192
  123. Mathematical School “The Method of Small Parameter and Its Application”

    Uspekhi Mat. Nauk, 33:3(201) (1978),  207–213
  124. Lev Èrnestovich El'sgol'ts (obituary)

    Uspekhi Mat. Nauk, 23:2(140) (1968),  193–200
  125. The work of Tikhonov and his pupils on ordinary differential equations containing a small parameter

    Uspekhi Mat. Nauk, 22:2(134) (1967),  149–168


© Steklov Math. Inst. of RAS, 2026