RUS  ENG
Full version
PEOPLE

Soloukhin Rem Ivanovich

Publications in Math-Net.Ru

  1. Stability of thin liquid films

    Prikl. Mekh. Tekh. Fiz., 29:5 (1988),  124–127
  2. Plasma dynamics of optical breakdown during deep melting of metals

    Prikl. Mekh. Tekh. Fiz., 29:5 (1988),  7–13
  3. Speckle photography of density gradients in a free flame

    Fizika Goreniya i Vzryva, 23:6 (1987),  40–46
  4. Kinetics of vibrational energy transfer in a gasdynamic CO laser

    Kvantovaya Elektronika, 14:6 (1987),  1185–1193
  5. Absorption of infrared radiation in metallic capillaries

    Kvantovaya Elektronika, 14:1 (1987),  177–184
  6. EFFECT OF CARBON-DIOXIDE ON THERMALLY UNEQUILIBRIUM NITROGEN IONIZATION

    Zhurnal Tekhnicheskoi Fiziki, 56:10 (1986),  2029–2031
  7. MEASUREMENT OF THE ELECTRON-DENSITY IN THE SUPERSONIC-FLOW OF NON-EQUILIBRIUM-IONIZED AIR

    Zhurnal Tekhnicheskoi Fiziki, 55:2 (1985),  419–422
  8. Tunable lasers with intracavity separation of the emission lines

    Kvantovaya Elektronika, 12:2 (1985),  351–354
  9. A NEW CELLULAR CONSTRUCTION JET BLOCK FOR GDL

    Zhurnal Tekhnicheskoi Fiziki, 54:9 (1984),  1824–1825
  10. Resonance absorption of 9.6-$\mu$m emission by carbon dioxide at high temperatures

    Prikl. Mekh. Tekh. Fiz., 21:3 (1980),  3–9
  11. Influence of the reflection of radiation on radiative-convective heat exchange during hypersonic flow over blunt bodies

    Prikl. Mekh. Tekh. Fiz., 21:2 (1980),  99–107
  12. Determination of rotational and vibrational temperatures using a tunable CO$_2$ laser

    Fizika Goreniya i Vzryva, 15:6 (1979),  57–64
  13. Diagnostics of supersonic two-phase streams from scattered laser radiation

    Prikl. Mekh. Tekh. Fiz., 19:2 (1978),  36–46
  14. Numerical analysis of the characteristics of a gasdynamic laser utilizing selective thermal excitation and supersonic mixing

    Kvantovaya Elektronika, 5:11 (1978),  2337–2341
  15. Influence of preionization conditions on the development of a homogeneous discharge in gases

    Kvantovaya Elektronika, 5:3 (1978),  555–562
  16. Investigation of the equilibrium zone behind the front of an ionizing shock wave

    Fizika Goreniya i Vzryva, 13:3 (1977),  481–483
  17. Experimental investigation of the effect of velocity lag of particles in a supersonic gas stream

    Prikl. Mekh. Tekh. Fiz., 18:4 (1977),  80–88
  18. Effect of rate of replacement of working gas on characteristics of a CO$_2$ laser with a closed cycle

    Prikl. Mekh. Tekh. Fiz., 18:3 (1977),  6–9
  19. Resonance СO$_2$ absorption (10.6 $\mu$) behind a shock front

    Prikl. Mekh. Tekh. Fiz., 18:1 (1977),  42–47
  20. Generating conditions in a gasdynamic laser with thermal excitation and mixing in a supersonic flow

    Fizika Goreniya i Vzryva, 12:5 (1976),  792–795
  21. Combustion kinetics of a mixture of hydrogen and nitrous oxide in shock waves

    Fizika Goreniya i Vzryva, 11:5 (1975),  790–792
  22. Calculation of shock adiabats for nitrogen

    Fizika Goreniya i Vzryva, 11:3 (1975),  491–497
  23. Optimization and limiting characteristics of CO$_2$ lasers

    Prikl. Mekh. Tekh. Fiz., 16:5 (1975),  120–131
  24. Visualization of the pressure fields of gas streams by the method of holographic interferometry

    Prikl. Mekh. Tekh. Fiz., 16:3 (1975),  88–92
  25. Quasistationary mode of CO$_2$-laser excitation by a nonindependent discharge

    Prikl. Mekh. Tekh. Fiz., 16:2 (1975),  3–12
  26. Limiting energy characteristics of pulsed tea CO$_2$ lasers

    Prikl. Mekh. Tekh. Fiz., 16:1 (1975),  3–12
  27. Heated-cathode pulse CO2 laser pumped by a gas discharge at atmospheric pressure

    Kvantovaya Elektronika, 2:8 (1975),  1822–1824
  28. Stabilization of a glow discharge in a gas stream for the excitation of extended active media

    Kvantovaya Elektronika, 2:4 (1975),  758–764
  29. Effect of the composition and temperature of the medium on the efficiency of the thermal excitation of inversion by mixing in a supersonic flow

    Fizika Goreniya i Vzryva, 10:4 (1974),  473–485
  30. Measurement of amplification coefficients

    Prikl. Mekh. Tekh. Fiz., 15:3 (1974),  3–12
  31. Use of an extended gas glow discharge in a closed-cycle CO$_2$ laser with convective cooling

    Prikl. Mekh. Tekh. Fiz., 15:1 (1974),  4–12
  32. Mechanism of the driving process in the combustion of hydrogen

    Fizika Goreniya i Vzryva, 9:6 (1973),  823–834
  33. A laser-Doppler velocity measurement device for the investigation of rapid gas-dynamic flows

    Fizika Goreniya i Vzryva, 9:4 (1973),  585–595
  34. Gasdynamic processes in shock tubes during production of inversion

    Fizika Goreniya i Vzryva, 9:3 (1973),  352–362
  35. Numerical analysis of kinetic models of hydrogen ignition

    Fizika Goreniya i Vzryva, 9:1 (1973),  95–101
  36. Tunable resonator with a mirror of variable curvature

    Kvantovaya Elektronika, 1973, no. 4(16),  110–113
  37. Application of gasdynamic flows in laser technology

    Fizika Goreniya i Vzryva, 8:2 (1972),  163–202
  38. Resonance absorption of laser radiation by methane behind a shock front

    Fizika Goreniya i Vzryva, 8:1 (1972),  92–98
  39. Q-switching in a CO$_2$ laser with an active gas cell

    Prikl. Mekh. Tekh. Fiz., 13:4 (1972),  171–173
  40. Методы инфракрасной диагностики плазмы

    TVT, 10:6 (1972),  1307–1314
  41. Distribution of the electron concentration and wave processes in a pulsed discharge

    Prikl. Mekh. Tekh. Fiz., 12:2 (1971),  15–20
  42. A semiconductor pressure transducer for measurement of strong shock waves ($\ge10^3$ atm) in liquid

    Prikl. Mekh. Tekh. Fiz., 10:4 (1969),  92–94
  43. Measurement of the recombination rate of oxygen in shock waves

    Fizika Goreniya i Vzryva, 3:3 (1967),  402–411
  44. The structure of shock waves from electrodeless discharges in air and argon

    Prikl. Mekh. Tekh. Fiz., 8:4 (1967),  104–110
  45. Exothermic reaction zone in one-dimensional shock waves in gases

    Fizika Goreniya i Vzryva, 2:3 (1966),  12–18
  46. Проводимость и скорость среды за фронтом детонации в газе

    TVT, 4:2 (1966),  177–181
  47. The mechanism of high-temperature methane oxidation in shock waves

    Dokl. Akad. Nauk SSSR, 161:5 (1965),  1118–1120
  48. Структура многофронтовой детонационной волны в газе

    Fizika Goreniya i Vzryva, 1:2 (1965),  35–42
  49. Шлирен-метод для измерения скачка плотности в ударной волне

    Fizika Goreniya i Vzryva, 1:1 (1965),  112–114
  50. Ударная трубка для исследования одномерных волн в жидкости

    Fizika Goreniya i Vzryva, 1:1 (1965),  5–14
  51. Temperature measurements behind detonation fronts in gases

    Prikl. Mekh. Tekh. Fiz., 6:5 (1965),  124–126
  52. The multifront detonation diffraction

    Dokl. Akad. Nauk SSSR, 159:5 (1964),  1003–1006
  53. The mechanism and limits of chainselfinflammasion of hydrogen with oxygen in shock waves

    Dokl. Akad. Nauk SSSR, 154:6 (1964),  1425–1428
  54. О структуре потока в электроразрядных ударных трубках

    Prikl. Mekh. Tekh. Fiz., 5:5 (1964),  138–140
  55. О детонации в газе, нагретом ударной волной

    Prikl. Mekh. Tekh. Fiz., 5:4 (1964),  42–48
  56. Некоторые данные о неравновесном состоянии углекислого газа за фронтом ударной волны

    Prikl. Mekh. Tekh. Fiz., 4:6 (1963),  138–140
  57. К преломлению ударной волны на фронте пламени

    Prikl. Mekh. Tekh. Fiz., 4:4 (1963),  40–47
  58. Detonation waves in gases

    UFN, 80:4 (1963),  525–551
  59. Спектроскопическое исследование состояния газа за фронтом детонации

    Prikl. Mekh. Tekh. Fiz., 3:2 (1962),  37–41
  60. Bubble mechanism of impact inflammation in liquids

    Dokl. Akad. Nauk SSSR, 136:2 (1961),  311–312
  61. Пульсирующее горение газа за ударной волной в сверхзвуковом потоке

    Prikl. Mekh. Tekh. Fiz., 2:5 (1961),  57–60
  62. Переход горения в детонацию в газах

    Prikl. Mekh. Tekh. Fiz., 2:4 (1961),  128–132
  63. Сжатие сферической газовой полости в воде ударной волной

    Prikl. Mekh. Tekh. Fiz., 2:1 (1961),  27–29
  64. Применение ударных волн для изучения воспламенения газа

    Prikl. Mekh. Tekh. Fiz., 1:2 (1960),  90–92
  65. Детонация ацетилена

    Prikl. Mekh. Tekh. Fiz., 1:1 (1960),  18–20
  66. Shock wave studies of the physical properties of gases

    UFN, 68:3 (1959),  513–528
  67. On the inflammation of adiabatically heated gas mixture

    Dokl. Akad. Nauk SSSR, 122:6 (1958),  1039–1041


© Steklov Math. Inst. of RAS, 2026