|
|
Publications in Math-Net.Ru
-
The existence of functional integrals in a model of quantum field theory on a loop space
Uspekhi Mat. Nauk, 59:5(359) (2004), 163–164
-
A method of summation of divergent series to any accuracy
Mat. Zametki, 68:1 (2000), 24–35
-
Perturbation theory with convergent series for calculating physical quantities specified by finitely many terms of a divergent series in traditional perturbation theory
TMF, 123:3 (2000), 452–461
-
A general approach to calculation of functional integrals and summation of divergent series
Fundam. Prikl. Mat., 5:2 (1999), 363–383
-
A summation method for divergent series
Uspekhi Mat. Nauk, 54:3(327) (1999), 153–154
-
Calculation of functional integrals with the help of convergent series
Fundam. Prikl. Mat., 3:3 (1997), 693–713
-
Perturbation theory with convergent series for functional integrals with respect to the Feynman measure
Uspekhi Mat. Nauk, 52:2(314) (1997), 155–156
-
Method of approximate calculating path integrals by using perturbation theory with convergent series. II. Euclidean quantum field theory
TMF, 109:1 (1996), 60–69
-
Method of approximate calculating path integrals by using perturbation theory with convergent series. I
TMF, 109:1 (1996), 51–59
-
A symmetric bar-construction and combinatorial topological models
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1994, no. 3, 90–92
-
The topology of four-dimensional manifolds
Uspekhi Mat. Nauk, 46:2(278) (1991), 145–202
-
The rational homotopy type of Hermitian $K$-theory
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1990, no. 5, 77–80
-
Rational Hermitian $K$-theory and dihedral homology
Izv. Akad. Nauk SSSR Ser. Mat., 52:5 (1988), 935–969
-
Dihedral homology and cohomology. Basic notions and constructions
Mat. Sb. (N.S.), 133(175):1(5) (1987), 25–48
-
Dihedral homology and cohomology
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1987, no. 4, 28–32
-
Algebraic $K$-theory of quadratic forms
Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 24 (1986), 121–194
-
Dihedral homology and Hermitian $K$-theory of topological spaces
Uspekhi Mat. Nauk, 41:2(248) (1986), 195–196
-
Characteristic classes in algebraic $K$-theory
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1986, no. 1, 75–76
-
Equivalence of two definitions of the algebraic $K$-theory of spaces
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 6, 8–12
-
Homotopy multiplication in the representing spaces of Hermitian $K$-theory
Dokl. Akad. Nauk SSSR, 258:1 (1981), 30–34
-
Signature realizable subgroups of the Wall group
Uspekhi Mat. Nauk, 36:3(219) (1981), 223–224
-
Quillen constructions in Hermitian $K$-theory
Dokl. Akad. Nauk SSSR, 253:2 (1980), 301–304
-
Representations of Banach algebras and formulas of Hirzebruch type
Mat. Sb. (N.S.), 111(153):2 (1980), 209–226
-
On infinite-dimensional representations of fundamental groups and formulas of Hirzebruch type
Dokl. Akad. Nauk SSSR, 234:4 (1977), 761–764
-
Homotopy invariants of rational homology manifolds
Dokl. Akad. Nauk SSSR, 230:1 (1976), 41–43
-
Discrete subgroups, Bruhat–Tits buildings and homotopy invariance of higher signatures
Uspekhi Mat. Nauk, 31:1(187) (1976), 261–262
-
Department of mechanics and mathematics of MSU is seventy
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2003, no. 3, 3–12
-
Aleksandr Sergeevich Mishchenko (on his 60th birthday)
Uspekhi Mat. Nauk, 56:6(342) (2001), 167–170
-
Aleksandr Sergeevitch Mischenko
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2001, no. 5, 67–69
© , 2026