RUS  ENG
Full version
PEOPLE

Solov'ev Yurii Petrovich

Publications in Math-Net.Ru

  1. The existence of functional integrals in a model of quantum field theory on a loop space

    Uspekhi Mat. Nauk, 59:5(359) (2004),  163–164
  2. A method of summation of divergent series to any accuracy

    Mat. Zametki, 68:1 (2000),  24–35
  3. Perturbation theory with convergent series for calculating physical quantities specified by finitely many terms of a divergent series in traditional perturbation theory

    TMF, 123:3 (2000),  452–461
  4. A general approach to calculation of functional integrals and summation of divergent series

    Fundam. Prikl. Mat., 5:2 (1999),  363–383
  5. A summation method for divergent series

    Uspekhi Mat. Nauk, 54:3(327) (1999),  153–154
  6. Calculation of functional integrals with the help of convergent series

    Fundam. Prikl. Mat., 3:3 (1997),  693–713
  7. Perturbation theory with convergent series for functional integrals with respect to the Feynman measure

    Uspekhi Mat. Nauk, 52:2(314) (1997),  155–156
  8. Method of approximate calculating path integrals by using perturbation theory with convergent series. II. Euclidean quantum field theory

    TMF, 109:1 (1996),  60–69
  9. Method of approximate calculating path integrals by using perturbation theory with convergent series. I

    TMF, 109:1 (1996),  51–59
  10. A symmetric bar-construction and combinatorial topological models

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1994, no. 3,  90–92
  11. The topology of four-dimensional manifolds

    Uspekhi Mat. Nauk, 46:2(278) (1991),  145–202
  12. The rational homotopy type of Hermitian $K$-theory

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1990, no. 5,  77–80
  13. Rational Hermitian $K$-theory and dihedral homology

    Izv. Akad. Nauk SSSR Ser. Mat., 52:5 (1988),  935–969
  14. Dihedral homology and cohomology. Basic notions and constructions

    Mat. Sb. (N.S.), 133(175):1(5) (1987),  25–48
  15. Dihedral homology and cohomology

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1987, no. 4,  28–32
  16. Algebraic $K$-theory of quadratic forms

    Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 24 (1986),  121–194
  17. Dihedral homology and Hermitian $K$-theory of topological spaces

    Uspekhi Mat. Nauk, 41:2(248) (1986),  195–196
  18. Characteristic classes in algebraic $K$-theory

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1986, no. 1,  75–76
  19. Equivalence of two definitions of the algebraic $K$-theory of spaces

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 6,  8–12
  20. Homotopy multiplication in the representing spaces of Hermitian $K$-theory

    Dokl. Akad. Nauk SSSR, 258:1 (1981),  30–34
  21. Signature realizable subgroups of the Wall group

    Uspekhi Mat. Nauk, 36:3(219) (1981),  223–224
  22. Quillen constructions in Hermitian $K$-theory

    Dokl. Akad. Nauk SSSR, 253:2 (1980),  301–304
  23. Representations of Banach algebras and formulas of Hirzebruch type

    Mat. Sb. (N.S.), 111(153):2 (1980),  209–226
  24. On infinite-dimensional representations of fundamental groups and formulas of Hirzebruch type

    Dokl. Akad. Nauk SSSR, 234:4 (1977),  761–764
  25. Homotopy invariants of rational homology manifolds

    Dokl. Akad. Nauk SSSR, 230:1 (1976),  41–43
  26. Discrete subgroups, Bruhat–Tits buildings and homotopy invariance of higher signatures

    Uspekhi Mat. Nauk, 31:1(187) (1976),  261–262

  27. Department of mechanics and mathematics of MSU is seventy

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2003, no. 3,  3–12
  28. Aleksandr Sergeevich Mishchenko (on his 60th birthday)

    Uspekhi Mat. Nauk, 56:6(342) (2001),  167–170
  29. Aleksandr Sergeevitch Mischenko

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2001, no. 5,  67–69


© Steklov Math. Inst. of RAS, 2026