RUS  ENG
Full version
PEOPLE

Lakaev Saidakhmat Norzhigitovich

Publications in Math-Net.Ru

  1. On the existence of the maximum number of isolated eigenvalues for a lattice Schrödinger operator

    Nanosystems: Physics, Chemistry, Mathematics, 16:6 (2025),  737–748
  2. Existence of three-particle bound states in optical lattice

    TMF, 225:3 (2025),  629–646
  3. Threshold effects in a two-fermion system on an optical lattice

    TMF, 203:2 (2020),  251–268
  4. Threshold phenomena in the spectrum of the two-particle Schrödinger operator on a lattice

    TMF, 198:3 (2019),  418–432
  5. Threshold phenomenon for a family of the generalized Friedrichs models with the perturbation of rank one

    Ufimsk. Mat. Zh., 11:4 (2019),  139–149
  6. Bound states of the Schrödinger operator of a system of three bosons on a lattice

    TMF, 188:1 (2016),  36–48
  7. Positivity of eigenvalues of the two-particle Schrödinger operator on a lattice

    TMF, 178:3 (2014),  390–402
  8. Asymptotics of the eigenvalues of a discrete Schrödinger operator with zero-range potential

    Izv. RAN. Ser. Mat., 76:5 (2012),  99–118
  9. Asymptotic behavior of an eigenvalue of the two-particle discrete Schrödinger operator

    TMF, 171:3 (2012),  438–451
  10. Existence and analyticity of bound states of a two-particle Schrödinger operator on a lattice

    TMF, 170:3 (2012),  393–408
  11. Existence and analyticity of eigenvalues of a two-channel molecular resonance model

    TMF, 169:3 (2011),  341–351
  12. The number of bound states of a one-particle Hamiltonian on a three-dimensional lattice

    TMF, 158:3 (2009),  425–443
  13. The number of eigenvalues of the two-particle discrete Schrödinger operator

    TMF, 158:2 (2009),  263–276
  14. Spectrum of the two-particle Schrödinger operator on a lattice

    TMF, 155:2 (2008),  287–300
  15. The Asymptotics of the Number of Eigenvalues of a Three-Particle Lattice Schrödinger Operator

    Funktsional. Anal. i Prilozhen., 37:3 (2003),  80–84
  16. Efimov's Effect in a Model of Perturbation Theory of the Essential Spectrum

    Funktsional. Anal. i Prilozhen., 37:1 (2003),  81–84
  17. A Model in the Theory of Perturbations of the Essential Spectrum of Multiparticle Operators

    Mat. Zametki, 73:4 (2003),  556–564
  18. Asymptotics of the Discrete Spectrum of the Three-Particle Schrödinger Difference Operator on a Lattice

    TMF, 136:2 (2003),  231–245
  19. Essential and Discrete Spectra of the Three-Particle Schrödinger Operator on a Lattice

    TMF, 135:3 (2003),  478–503
  20. On the Finiteness of the Discrete Spectrum of a Four-Particle Lattice Schrödinger Operator

    Funktsional. Anal. i Prilozhen., 36:3 (2002),  56–60
  21. Spectrum of the Three-Particle Schrödinger Difference Operator on a Lattice

    Mat. Zametki, 71:5 (2002),  686–696
  22. Conditions for the finiteness of the discrete spectrum of the Hamiltonian of a system of three arbitrary particles on a lattice

    Uspekhi Mat. Nauk, 57:1(343) (2002),  155–156
  23. Finiteness of the Discrete Spectrum of the Hamiltonian of a System of Three Arbitrary Particles on a Lattice

    TMF, 129:3 (2001),  415–431
  24. Spectral Properties of the Three-Particle Difference Schrödinger Operator

    Funktsional. Anal. i Prilozhen., 33:2 (1999),  84–88
  25. The spectrum of the Hamiltonian of a system of three quantum particles on a lattice

    Uspekhi Mat. Nauk, 54:6(330) (1999),  165–166
  26. Spectrum of the four-particle Schrödinger operator with paired contact interactions on a lattice

    Uspekhi Mat. Nauk, 53:3(321) (1998),  201–202
  27. Finiteness of discrete spectrum of three particle Schrödinger operator on the lattice

    TMF, 111:1 (1997),  94–108
  28. Embedded eigenvalues and resonances of a generalized Friedrichs model

    TMF, 103:1 (1995),  54–62
  29. Merging of eigenvalues and resonances of a two-particle Schrödinger operator

    TMF, 101:2 (1994),  235–252
  30. On Efimov's Effect in a System of Three Identical Quantum Particles

    Funktsional. Anal. i Prilozhen., 27:3 (1993),  15–28
  31. Bound states and resonances of $N$-particle discrete Schrödinger operator

    TMF, 91:1 (1992),  51–65
  32. On the infinite number of three-particle bound states of a system of three quantum lattice particles

    TMF, 89:1 (1991),  94–104
  33. Structure of the resonances of the generalized friedrichs model

    Funktsional. Anal. i Prilozhen., 17:4 (1983),  88–89
  34. Discrete spectrum and resonances of a one-dimensional Schrödinger operator for small values of the coupling constants

    TMF, 44:3 (1980),  381–386
  35. Bound states of a cluster operator

    TMF, 39:1 (1979),  83–93


© Steklov Math. Inst. of RAS, 2026