RUS  ENG
Full version
PEOPLE

Kamlovskii Oleg Vital'evich

Publications in Math-Net.Ru

  1. Estimations of linear characteristics of some classes of functions over Galois rings

    Diskr. Mat., 37:3 (2025),  77–93
  2. A class of discrete functions constructed from several linear recurrence sequences over primal residue rings

    Diskr. Mat., 37:1 (2025),  9–21
  3. Distribution properties in the complications of sequences generated by several filter generators

    Mat. Vopr. Kriptogr., 16:4 (2025),  47–59
  4. On the frequency characteristics in the complications of filter generators output sequences

    Prikl. Diskr. Mat. Suppl., 2025, no. 18,  134–137
  5. On linear characteristics of some functions over Galois Rings

    Prikl. Diskr. Mat. Suppl., 2025, no. 18,  61–64
  6. On the curvature of one class of functions over residue rings taking binary values

    Prikl. Diskr. Mat. Suppl., 2025, no. 18,  56–61
  7. Properties of classes of Boolean functions constructed from several linear recurrences over a residue ring $\mathbb{Z}_{2^n}$

    Mat. Vopr. Kriptogr., 15:4 (2024),  9–22
  8. Frequency characteristics of sequences generated by the stream encryption algorithm GEA-1

    Mat. Vopr. Kriptogr., 15:3 (2024),  67–82
  9. Some properties of sequences generated by the GEA-1 encryption algorithm

    Prikl. Diskr. Mat. Suppl., 2024, no. 17,  75–78
  10. Cross-correlation function for the representations of one class of sequences over Galois rings

    Mat. Vopr. Kriptogr., 14:4 (2023),  71–88
  11. Some classes of resilient functions over Galois rings and their linear characteristics

    Prikl. Diskr. Mat. Suppl., 2023, no. 16,  18–22
  12. Distribution properties in the sum of linear recurring and the counter sequences over Galois rings

    Mat. Vopr. Kriptogr., 13:4 (2022),  53–67
  13. Some classes of balanced functions over finite fields with a small value of the linear characteristic

    Probl. Peredachi Inf., 58:4 (2022),  103–117
  14. Properties of distributions of elements in one class of sequences over Galois rings

    Mat. Vopr. Kriptogr., 12:4 (2021),  25–41
  15. Properties of the output sequences of a combination generators over finite fields

    Mat. Vopr. Kriptogr., 11:4 (2020),  23–47
  16. Cross-correlation coefficients for digit sequences of uniform linear recurrent sequences over the residue ring

    Mat. Vopr. Kriptogr., 11:1 (2020),  47–62
  17. Parameters of a class of functions over a finite field

    Mat. Vopr. Kriptogr., 9:4 (2018),  31–52
  18. The sum of modules of Walsh coefficients for some balanced Boolean functions

    Mat. Vopr. Kriptogr., 8:4 (2017),  75–98
  19. Application of Gauss sums to calculate the exact values of the number of appearances of elements on cycles of linear recurrences

    Prikl. Diskr. Mat., 2017, no. 36,  25–50
  20. Occurrence numbers for vectors in cycles of output sequences of binary combining generators

    Probl. Peredachi Inf., 53:1 (2017),  92–100
  21. Estimating the number of solutions of systems of nonlinear equations with linear recurring arguments by the spectral method

    Diskr. Mat., 28:2 (2016),  27–43
  22. Nonlinearity of a class of Boolean functions constructed using significant bits of linear recurrences over the ring $\mathbb Z_{2^n}$

    Mat. Vopr. Kriptogr., 7:3 (2016),  29–46
  23. On the Hamming distance between binary representations of linear recurrent sequences over field $GF(2^k)$ and ring $\mathbb{Z}_{2^n}$

    Mat. Vopr. Kriptogr., 7:1 (2016),  71–82
  24. The sum of modules of Walsh coefficients of Boolean functions

    Diskr. Mat., 27:4 (2015),  49–66
  25. Distribution properties of rows and columns for matrix linear recurrent sequences of the first order

    Mat. Vopr. Kriptogr., 6:4 (2015),  65–76
  26. Frequency characteristics of cycles in output sequences generated by combining generators over the field of two elements

    Prikl. Diskr. Mat., 2015, no. 3(29),  17–31
  27. Nonabsolute bounds for incomplete exponential sums of elements of linear recurrent sequences and their applications

    Mat. Vopr. Kriptogr., 5:3 (2014),  17–34
  28. Equidistributed sequences over finite fields produced by one class of linear recurring sequences over residue rings

    Probl. Peredachi Inf., 50:2 (2014),  60–76
  29. Distribution of $r$-tuples in one class of uniformly distributed sequences over residue rings

    Probl. Peredachi Inf., 50:1 (2014),  98–115
  30. Frequency characteristics of coordinate sequences of linear recurrences over Galois rings

    Izv. RAN. Ser. Mat., 77:6 (2013),  71–96
  31. The number of different $r$-patterns in linear recurrent sequences over Galois rings

    Mat. Vopr. Kriptogr., 4:3 (2013),  49–82
  32. Distribution properties of sequences produced by filtering generators

    Prikl. Diskr. Mat., 2013, no. 3(21),  11–25
  33. Improved bounds for the number of occurrences of elements in linear recurrence sequences over Galois rings

    Fundam. Prikl. Mat., 17:7 (2012),  97–115
  34. Parameters of Boolean functions generated by the most significant bits of linear recurrent sequences

    Mat. Vopr. Kriptogr., 3:4 (2012),  25–53
  35. The Sidelnikov Method for Estimating the Number of Signs on Segments of Linear Recurrence Sequences over Galois Rings

    Mat. Zametki, 91:3 (2012),  371–382
  36. Exponential sums method for frequencies of most significant bit $r$-patterns in linear recurrent sequences over $\mathbb{Z}_{2^n}$

    Mat. Vopr. Kriptogr., 1:4 (2010),  33–62
  37. Frequency characteristics of linear recurrence sequences over Galois rings

    Mat. Sb., 200:4 (2009),  31–52
  38. Estimates of the number of occurrences of vectors on cycles of linear recurring sequences over a finite field

    Diskr. Mat., 20:4 (2008),  102–112
  39. Occurrence Indices of Elements in Linear Recurrence Sequences over Primary Residue Rings

    Probl. Peredachi Inf., 44:2 (2008),  101–109
  40. Bounds for the number of occurrences of elements in a linear recurring sequence over a Galois ring

    Fundam. Prikl. Mat., 6:4 (2000),  1083–1094
  41. Distribution of elements on cycles of linear recurrent sequences over Galois rings

    Uspekhi Mat. Nauk, 53:2(320) (1998),  149–150


© Steklov Math. Inst. of RAS, 2026