RUS  ENG
Full version
PEOPLE

Perov Anatoliy Ivanovich

Publications in Math-Net.Ru

  1. The Vandermonde matrix in the general case

    Dokl. RAN. Math. Inf. Proc. Upr., 521 (2025),  81–87
  2. The Vandermonde matrix in the commutative case

    Dokl. RAN. Math. Inf. Proc. Upr., 517 (2024),  33–37
  3. Spectral Test for Exponential Stability

    Mat. Zametki, 113:4 (2023),  489–498
  4. Differential equations in Banach algebras

    Dokl. RAN. Math. Inf. Proc. Upr., 491 (2020),  73–77
  5. On differential equations in Banach algebras

    Russian Universities Reports. Mathematics, 25:132 (2020),  410–421
  6. Absolute logarithmic norm

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 4,  70–85
  7. Signs of regularity and stability of differential equations of higher order

    Tambov University Reports. Series: Natural and Technical Sciences, 23:124 (2018),  674–678
  8. Research of the nonautonomous system of ODE by the ideas of the method of guiding functions

    Tambov University Reports. Series: Natural and Technical Sciences, 23:123 (2018),  510–516
  9. Kolmogorov matrix, and a continuous Markov chain with a finite number of states

    Tambov University Reports. Series: Natural and Technical Sciences, 23:123 (2018),  503–509
  10. Conditions for invertibility and Hurwitz stability

    Funktsional. Anal. i Prilozhen., 51:4 (2017),  84–89
  11. On the Spectral Abscissa and the Logarithmic Norm

    Mat. Zametki, 101:4 (2017),  562–575
  12. Non-linear differential equations of higher order

    Meždunar. nauč.-issled. žurn., 2016, no. 6-5(48),  99–102
  13. On bounded solutions to weakly nonlinear vector-matrix differential equations of order $n$

    Sibirsk. Mat. Zh., 57:4 (2016),  830–849
  14. New features of stability of linear systems of differential equations with constant coefficients

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 9,  49–58
  15. On one stability criterion for linear systems of differential equations with periodic coefficients

    Avtomat. i Telemekh., 2013, no. 2,  22–37
  16. Multidimensional Version of M. A. Krasnosel'skii's Generalized Contraction Principle

    Funktsional. Anal. i Prilozhen., 44:1 (2010),  83–87
  17. A canonical system of two differential equations with periodic coefficients and the Poincaré–Denjoy theory of differential equations on a torus

    Sibirsk. Mat. Zh., 51:2 (2010),  373–387
  18. On the Hadamard lemma and the Lipschitz condition

    Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 12,  36–48
  19. New Stability Criteria for Constant-Coefficient Linear Systems

    Avtomat. i Telemekh., 2002, no. 2,  22–33
  20. Jorke's Theorem and Wirtinger's Inequality

    Mat. Zametki, 70:2 (2001),  237–245
  21. Bounds of determinants of matrices satisfying the Hadamard and Brauer conditions

    Zh. Vychisl. Mat. Mat. Fiz., 41:2 (2001),  179–185
  22. Sufficient conditions for the stability of linear systems with constant coefficients in critical cases. II

    Avtomat. i Telemekh., 2000, no. 10,  49–59
  23. The discrete matrix Luré equation (the singular case)

    Avtomat. i Telemekh., 2000, no. 3,  46–57
  24. Estimates for the elements of inverse matrices under the conditions of regularity criteria

    Zh. Vychisl. Mat. Mat. Fiz., 39:6 (1999),  867–875
  25. On a theorem of Ostrowski

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 11,  77–82
  26. On Brauer's theorem and Cassini's ovals

    Uspekhi Mat. Nauk, 53:1(319) (1998),  225–226
  27. Sufficient Conditions of Stability of Linear Systems with Constant Coefficients in Critical Cases. I

    Avtomat. i Telemekh., 1997, no. 12,  80–89
  28. Sufficient conditions for the stability of linear systems with constant coefficients in critical cases

    Differ. Uravn., 33:10 (1997),  1349–1357
  29. Lur'e discrete matrix equation (regular case)

    Avtomat. i Telemekh., 1995, no. 3,  21–29
  30. On an inequality of La Salle

    Avtomat. i Telemekh., 1994, no. 10,  188–189
  31. On a geometric result in problems of periodic optimization

    Differ. Uravn., 26:4 (1990),  718–721
  32. Optimal corrective control of a linear discrete-time system

    Avtomat. i Telemekh., 1988, no. 1,  163–166
  33. Eigenvalues and eigenfunctions of an integro-differential operator

    Differ. Uravn., 24:3 (1988),  516–519
  34. Regularity classes of bilinear forms, and nonlinear elliptic boundary value problems

    Differ. Uravn., 24:3 (1988),  464–476
  35. A generalization of Wirtinger's inequality

    Differ. Uravn., 22:6 (1986),  1074–1076
  36. A variational approach to a problem on periodic solutions

    Sibirsk. Mat. Zh., 25:1 (1984),  106–119
  37. On the question of approximate determination of periodic solutions of differential equations

    Differ. Uravn., 19:11 (1983),  2001–2004
  38. Some local existence theorems for periodic solutions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 7,  50–60
  39. Monotone differential equations. IV

    Differ. Uravn., 14:7 (1978),  1192–1202
  40. Monotone differential equations. III

    Differ. Uravn., 14:2 (1978),  232–244
  41. Potential operators

    Mat. Zametki, 24:6 (1978),  793–799
  42. A multi-dimensional algorithm of sliding adaptive reception

    Avtomat. i Telemekh., 1977, no. 6,  57–63
  43. The convergence of a certain iteration process

    Zh. Vychisl. Mat. Mat. Fiz., 17:4 (1977),  859–870
  44. Monotone differential equations. II

    Differ. Uravn., 12:7 (1976),  1223–1237
  45. Monotone differential equations. I

    Differ. Uravn., 10:5 (1974),  804–815
  46. On the Poincaré–Denjoy theory of multidimensional differential equations

    Differ. Uravn., 8:5 (1972),  801–810
  47. The almost periodic solutions of homogeneous differential equations

    Differ. Uravn., 8:3 (1972),  453–458
  48. Multidimensional linear differential equations with periodic coefficients

    Izv. Vyssh. Uchebn. Zaved. Mat., 1970, no. 5,  64–73
  49. Nonlinear multidimensional differential equations

    Dokl. Akad. Nauk SSSR, 189:3 (1969),  479–482
  50. New complete solvability conditions and questions of reducibility

    Dokl. Akad. Nauk SSSR, 186:1 (1969),  26–29
  51. A certain generalization of the Frobenius theorem

    Differ. Uravn., 5:10 (1969),  1881–1884
  52. On the theory of multidimensional differential equations with constant coefficients

    Differ. Uravn., 4:7 (1968),  1289–1298
  53. Theorems of Favard and Bohr–Neugebauer for multidimensional differential equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 5,  62–70
  54. A question on the structure of the limit set

    Dokl. Akad. Nauk SSSR, 176:3 (1967),  526–529
  55. Bounded solutions of differential equations of second order

    Differ. Uravn., 3:3 (1967),  524–528
  56. The zero-manifolds of solutions of multidimensional differential equations of the second order

    Dokl. Akad. Nauk SSSR, 168:6 (1966),  1254–1256
  57. Investigation in the neighborhood of a singular point of a multi-dimensional differential equation in the analytic case

    Dokl. Akad. Nauk SSSR, 166:3 (1966),  544–547
  58. On a certan boundary value problem

    Differ. Uravn., 2:3 (1966),  365–370
  59. On a certain general method for investigation of boundary value problems

    Izv. Akad. Nauk SSSR Ser. Mat., 30:2 (1966),  249–264
  60. A multi-dimensional linear differential equation of the second order with constant coefficient

    Izv. Vyssh. Uchebn. Zaved. Mat., 1966, no. 6,  117–124
  61. On multidimensional differential equations of the first order

    Sibirsk. Mat. Zh., 7:2 (1966),  344–352
  62. Some remarks on differential inequalities

    Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 4,  104–112
  63. On a higher-dimensional linear differential equation of second order

    Dokl. Akad. Nauk SSSR, 159:4 (1964),  755–758
  64. Topological characteristics of solutions of higher-dimensional differential equations

    Dokl. Akad. Nauk SSSR, 157:4 (1964),  791–794
  65. On multi-dimensional differential equations with constant coefficients

    Dokl. Akad. Nauk SSSR, 154:6 (1964),  1266–1269
  66. A generalization of a theorem of M. A. Krasnosel'skii on the complete continuity of the Fréchet derivative of a completely continuous operator

    Sibirsk. Mat. Zh., 4:3 (1963),  702–704
  67. A boundary-value problem for a system of two differential equations

    Dokl. Akad. Nauk SSSR, 144:3 (1962),  493–496
  68. Periodical, almost periodical and bounded solutions to differential equation $dx/dt=f(t,x)$

    Dokl. Akad. Nauk SSSR, 132:3 (1960),  531–534
  69. On a certain principle of the existence of bounded, periodical and almost periodical solutions to systems of ordinary differential equations

    Dokl. Akad. Nauk SSSR, 123:2 (1958),  235–238
  70. A two-point boundary value problem

    Dokl. Akad. Nauk SSSR, 122:6 (1958),  982–985
  71. On uniqueness theorems for ordinary differential equations

    Dokl. Akad. Nauk SSSR, 120:4 (1958),  704–707

  72. Kirill Andreevich Rodosskii (obituary)

    Uspekhi Mat. Nauk, 61:5(371) (2006),  173–175
  73. Memory of M. A. Krasnosel'skii

    Avtomat. i Telemekh., 1998, no. 2,  179–184
  74. Second Voronezh Winter Mathematical School

    Uspekhi Mat. Nauk, 23:4(142) (1968),  274–275


© Steklov Math. Inst. of RAS, 2026