RUS  ENG
Full version
PEOPLE

Rodionov Timofey Victorovich

Publications in Math-Net.Ru

  1. Research activity of the Chair of Mathematical Analysis

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2025, no. 1,  61–65
  2. Characterization of the Dedekind and countably Dedekind extensions of the lattice linear space of continuous bounded functions by means of order boundaries

    Chebyshevskii Sb., 25:3 (2024),  86–100
  3. Uniform with Respect to the Parameter $a\in(0,1)$ Two-Sided Estimates of the Sums of Sine and Cosine Series with Coefficients $1/k^a$ by the First Terms of Their Asymptotics

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022),  177–190
  4. Postclassical families of functions proper for descriptive and prescriptive spaces

    Fundam. Prikl. Mat., 19:6 (2014),  77–113
  5. Descriptive spaces and proper classes of functions

    Fundam. Prikl. Mat., 19:2 (2014),  51–107
  6. Naturalness of the Class of Lebesgue–Borel–Hausdorff Measurable Functions

    Mat. Zametki, 95:4 (2014),  554–563
  7. The characterization of integrals with respect to arbitrary Radon measures by the boundedness indices

    Fundam. Prikl. Mat., 17:1 (2012),  107–126
  8. Characterization of Radon integrals as linear functionals

    Fundam. Prikl. Mat., 16:8 (2010),  87–161
  9. The Riesz–Radon–Fréchet problem of characterization of integrals

    Uspekhi Mat. Nauk, 65:4(394) (2010),  153–178
  10. A Class of Uniform Functions and Its Relationship with the Class of Measurable Functions

    Mat. Zametki, 84:6 (2008),  809–824
  11. Classification of Borel sets and functions for an arbitrary space

    Mat. Sb., 199:6 (2008),  49–84
  12. Estimates for the images of $L^p$-functions for a class of integral operators

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2003, no. 6,  7–11
  13. Analogues of the Hausdorff–Young and Hardy–Littlewood theorems

    Izv. RAN. Ser. Mat., 65:3 (2001),  175–192
  14. Existence of almost everywhere convergent rearrangements of expansions with respect to systems similar to orthogonal ones

    Fundam. Prikl. Mat., 6:4 (2000),  1263–1268
  15. On convergence of generalized systems similar to orthogonal ones

    Fundam. Prikl. Mat., 6:3 (2000),  813–829
  16. Orthogonalization of ortho-similar systems by extension to a wider set

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2000, no. 1,  9–12

  17. Taras Pavlovich Lukashenko (to 70th anniversary)

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019, no. 2,  70–71


© Steklov Math. Inst. of RAS, 2026