RUS  ENG
Full version
PEOPLE

Filippov Vadim Ivanovich

Publications in Math-Net.Ru

  1. Integer expansion of elements from spaces of nonintegrable functions into Fourier-type series in systems of contractions and shifts of one function

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:4 (2024),  286–300
  2. Integer expansion in systems of translates and dilates of a single function

    Izv. RAN. Ser. Mat., 84:4 (2020),  187–197
  3. Series of Fourier type with integer coefficients by systems of dilates and translates of one function in $L_p$, $p\geq 1$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 6,  58–64
  4. On generalization of Haar system and other function systems in spaces $E_{\varphi}$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 1,  87–92
  5. Multimodular spaces and their properties

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 12,  57–65
  6. Representation systems obtained using translates and dilates of a single function in multidimensional spaces $E_{\varphi}$

    Izv. RAN. Ser. Mat., 76:6 (2012),  193–206
  7. On the Kolmogorov theorems on Fourier series and conjugate functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 7,  21–34
  8. Perturbation of the trigonometric system in $L_1(0,\pi)$

    Mat. Zametki, 80:3 (2006),  429–436
  9. Function systems obtained using translates and dilates of a single function in the paces $E_\varphi$ with $\lim_{t\to\infty}\frac{\varphi(t)}t=0$

    Izv. RAN. Ser. Mat., 65:2 (2001),  187–200
  10. Strong perturbations of the Haar system in the space $L_1(0,1)$

    Mat. Zametki, 66:4 (1999),  596–602
  11. Subsystems of the Haar system in spaces $E_{\varphi}$ with $\varliminf_{t\to\infty}\dfrac{\varphi(t)}{t}=0$

    Mat. Zametki, 51:6 (1992),  97–106
  12. Subsystems of the Faber–Schauder system in function space

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 2,  78–85


© Steklov Math. Inst. of RAS, 2026