RUS  ENG
Full version
PEOPLE

Laptev Gennady Gennadievich

Publications in Math-Net.Ru

  1. Non-existence of global solutions for higher-order evolution inequalities in unbounded cone-like domains

    Mosc. Math. J., 3:1 (2003),  63–84
  2. Absence of solutions to higher-order evolution differential inequalities

    Sibirsk. Mat. Zh., 44:1 (2003),  143–159
  3. Absence of solutions of differential inequalities and systems of hyperbolic type in conic domains

    Izv. RAN. Ser. Mat., 66:6 (2002),  65–90
  4. On the nonexistence of solutions of elliptic differential inequalities in a neighborhood of a conic point of the boundary

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 9,  50–59
  5. Nonexistence of Solutions of Elliptic Differential Inequalities in Conic Domains

    Mat. Zametki, 71:6 (2002),  855–866
  6. Nonexistence of global solutions to parabolic porous-medium equations

    Zh. Vychisl. Mat. Mat. Fiz., 42:8 (2002),  1191–1199
  7. Non-existence of solutions of semilinear parabolic differential inequalities in cones

    Mat. Sb., 192:10 (2001),  51–70
  8. On the Absence of Solutions for a Class of Singular Semilinear Differential Inequalities

    Trudy Mat. Inst. Steklova, 232 (2001),  223–235
  9. The absence of global positive solutions of systems of semilinear elliptic inequalities in cones

    Izv. RAN. Ser. Mat., 64:6 (2000),  107–124
  10. An Interpolation Method for Deriving a priori Estimates for Strong Solutions to Second-Order Semilinear Parabolic Equations

    Trudy Mat. Inst. Steklova, 227 (1999),  180–191
  11. Existence of strong solutions of second-order semilinear parabolic systems

    Differ. Uravn., 34:12 (1998),  1634–1639
  12. A priori estimates and the existence of strong solutions of semilinear parabolic systems

    Differ. Uravn., 34:4 (1998),  518–522
  13. A priori estimates of strong solutions of semilinear parabolic equations

    Mat. Zametki, 64:4 (1998),  564–572


© Steklov Math. Inst. of RAS, 2026