RUS  ENG
Full version
PEOPLE

Tyurin Andrei Nikolaevich

Publications in Math-Net.Ru

  1. Delzant models of moduli spaces

    Izv. RAN. Ser. Mat., 67:2 (2003),  167–180
  2. Lattice gauge theories and the Florentino conjecture

    Izv. RAN. Ser. Mat., 66:2 (2002),  205–224
  3. Abelian Lagrangian algebraic geometry

    Izv. RAN. Ser. Mat., 65:3 (2001),  15–50
  4. Non-abelian analogues of Abel's theorem

    Izv. RAN. Ser. Mat., 65:1 (2001),  133–196
  5. On Bohr–Sommerfeld bases

    Izv. RAN. Ser. Mat., 64:5 (2000),  163–196
  6. Special Lagrangian geometry as slightly deformed algebraic geometry (geometric quantization and mirror symmetry)

    Izv. RAN. Ser. Mat., 64:2 (2000),  141–224
  7. Canonical spin polynomials of an algebraic surface. I

    Izv. RAN. Ser. Mat., 58:6 (1994),  157–204
  8. Spin polynomial invariants of smooth structures on algebraic surfaces

    Izv. RAN. Ser. Mat., 57:2 (1993),  125–164
  9. Invariants of the smooth structure of an algebraic surface arising from the Dirac operator

    Izv. RAN. Ser. Mat., 56:2 (1992),  279–371
  10. The Weil–Petersson metric on the moduli space of stable vector bundles and sheaves on an algebraic surface

    Izv. Akad. Nauk SSSR Ser. Mat., 55:3 (1991),  608–630
  11. Algebraic geometric aspects of smooth structure. I. The Donaldson polynomials

    Uspekhi Mat. Nauk, 44:3(267) (1989),  93–143
  12. Symplectic structures on the varieties of moduli of vector bundles on algebraic surfaces with $p_g>0$

    Izv. Akad. Nauk SSSR Ser. Mat., 52:4 (1988),  813–852
  13. Special 0-cycles on a polarized $K3$ surface

    Izv. Akad. Nauk SSSR Ser. Mat., 51:1 (1987),  131–151
  14. Studies in the geometry of algebraic varieties in the algebra section of the Mathematics Institute of the Academy of Sciences

    Trudy Mat. Inst. Steklov., 168 (1984),  98–109
  15. Local and global invariants of a four-dimensional pseudo-Riemannian manifold

    Trudy Mat. Inst. Steklov., 165 (1984),  205–219
  16. The structure of the variety of pairs of commuting pencils of symmetric matrices

    Izv. Akad. Nauk SSSR Ser. Mat., 46:2 (1982),  409–430
  17. A local invariant of a Riemannian manifold

    Izv. Akad. Nauk SSSR Ser. Mat., 45:4 (1981),  824–851
  18. The geometry of singularities of a generic quadratic form

    Izv. Akad. Nauk SSSR Ser. Mat., 44:5 (1980),  1200–1211
  19. The intermediate Jacobian of three-dimensional varieties

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat., 12 (1979),  5–57
  20. A generalization of the Weierstrass $\wp$-function and the moduli variety of rigged Riemann surfaces

    Izv. Akad. Nauk SSSR Ser. Mat., 42:5 (1978),  1151–1161
  21. On periods of quadratic differentials

    Uspekhi Mat. Nauk, 33:6(204) (1978),  149–195
  22. Periods and principal parts of quadratic differentials on a rigged Riemann surface

    Izv. Akad. Nauk SSSR Ser. Mat., 41:6 (1977),  1425–1442
  23. Vector bundles of finite rank over infinite varieties

    Izv. Akad. Nauk SSSR Ser. Mat., 40:6 (1976),  1248–1268
  24. The geometry of the Poincaré theta-divisor of a Prym variety

    Izv. Akad. Nauk SSSR Ser. Mat., 39:5 (1975),  1003–1043
  25. On an invariant of a double of quadrics

    Izv. Akad. Nauk SSSR Ser. Mat., 39:1 (1975),  23–27
  26. On intersections of quadrics

    Uspekhi Mat. Nauk, 30:6(186) (1975),  51–99
  27. The geometry of moduli of vector bundles

    Uspekhi Mat. Nauk, 29:6(180) (1974),  59–88
  28. On the set of singularities of the Poincaré divisor of the Picard variety of the Fano surface of a nonsingular cubic

    Izv. Akad. Nauk SSSR Ser. Mat., 36:5 (1972),  947–956
  29. Five lectures on three-dimensional varieties

    Uspekhi Mat. Nauk, 27:5(167) (1972),  3–50
  30. The geometry of the Fano surface of a nonsingular cubic $F\subset P^4$ and Torelli theorems for Fano surfaces and cubics

    Izv. Akad. Nauk SSSR Ser. Mat., 35:3 (1971),  498–529
  31. On the Fano surface of a nonsingular cubic in $P^4$

    Izv. Akad. Nauk SSSR Ser. Mat., 34:6 (1970),  1200–1208
  32. Analogs of Torelli's theorem for multidimensional vector bundles over an arbitrary algebraic curve

    Izv. Akad. Nauk SSSR Ser. Mat., 34:2 (1970),  338–365
  33. Analog of Torelli's theorem for two-dimensional bundles over algebraic curves of arbitrary genus

    Izv. Akad. Nauk SSSR Ser. Mat., 33:5 (1969),  1149–1170
  34. Classification of $n$-dimensional vector bundles over an algebraic curve of arbitrary genus

    Izv. Akad. Nauk SSSR Ser. Mat., 30:6 (1966),  1353–1366
  35. The classification of vector bundles over an algebraic curve of arbitrary genus

    Izv. Akad. Nauk SSSR Ser. Mat., 29:3 (1965),  657–688
  36. Algebraic surfaces

    Trudy Mat. Inst. Steklov., 75 (1965),  3–215
  37. On the classification of two-dimensional fibre bundles over an algebraic curve of arbitrary genus

    Izv. Akad. Nauk SSSR Ser. Mat., 28:1 (1964),  21–52

  38. Vasilii Alekseevich Iskovskikh (on his 60th birthday)

    Uspekhi Mat. Nauk, 54:4(328) (1999),  183–187
  39. Vladimir Igorevich Arnol'd (on his 60th birthday)

    Uspekhi Mat. Nauk, 52:5(317) (1997),  235–255
  40. Yurii Ivanovich Manin (on his 60th birthday)

    Uspekhi Mat. Nauk, 52:4(316) (1997),  233–242
  41. Valentin Evgen'evich Voskresenskii (on his sixtieth birthday)

    Uspekhi Mat. Nauk, 43:2(260) (1988),  169–170
  42. Igor' Rostislavovich Shafarevich (on his sixtieth birthday)

    Uspekhi Mat. Nauk, 39:1(235) (1984),  167–174
  43. Corrections to the paper "The geometry of the Poincaré theta-divisor of a Prym variety"

    Izv. Akad. Nauk SSSR Ser. Mat., 42:2 (1978),  468


© Steklov Math. Inst. of RAS, 2026