RUS  ENG
Full version
PEOPLE

Gorbatsevich Vladimir Vitalyevich

Publications in Math-Net.Ru

  1. On lattices in Lie groups of general type and some applications

    Izv. RAN. Ser. Mat., 89:4 (2025),  32–53
  2. On low dimensional bases of natural bundles for compact homogeneous spaces

    Izv. RAN. Ser. Mat., 88:6 (2024),  118–138
  3. On decompositions and transitive actions of nilpotent Lie groups

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 4,  3–14
  4. On the fibre structure of compact homogeneous spaces

    Izv. RAN. Ser. Mat., 87:6 (2023),  49–75
  5. On Some Classes of Bases in Finite-Dimensional Lie Algebras

    Mat. Zametki, 114:2 (2023),  203–211
  6. On maximal extensions of nilpotent Lie algebras

    Funktsional. Anal. i Prilozhen., 56:4 (2022),  25–34
  7. Foundations of Lie theory for $\mathcal E$-structures and some of its applications

    Izv. RAN. Ser. Mat., 86:2 (2022),  34–61
  8. Isomorphism and diffeomorphism of semisimple Lie Groups

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 3,  3–12
  9. On the Isomorphism and Diffeomorphism of Compact Semisimple Lie Groups

    Mat. Zametki, 112:3 (2022),  384–390
  10. On the Killing form on Lie algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 4,  48–68
  11. Some Properties of Homogeneous $\mathcal E$-Manifolds

    Mat. Zametki, 109:5 (2021),  691–704
  12. Locally transitive analytic actions of Lie groups on compact surfaces

    Mat. Sb., 212:4 (2021),  45–75
  13. Polynomial realizations of finite-dimensional Lie algebras

    Funktsional. Anal. i Prilozhen., 54:2 (2020),  25–34
  14. Letter to the editors

    Izv. RAN. Ser. Mat., 84:6 (2020),  223
  15. On the topology of non-compact simply connected homogeneous manifolds

    Izv. RAN. Ser. Mat., 84:5 (2020),  20–39
  16. Some properties of almost abelian Lie algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 4,  26–42
  17. Computational Experiments with Nilpotent Lie Algebras

    Mat. Zametki, 107:1 (2020),  23–31
  18. Dual and almost-dual homogeneous spaces

    Izv. RAN. Ser. Mat., 83:1 (2019),  25–58
  19. On stationary subgroups of compact homogeneous spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 4,  36–51
  20. Foundations of a theory of dual Lie algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 4,  33–48
  21. Extension of transitive actions of Lie groups

    Izv. RAN. Ser. Mat., 81:6 (2017),  86–99
  22. Lie Algebras with Abelian Centralizers

    Mat. Zametki, 101:5 (2017),  690–699
  23. On geometry of solutions to approximate equations and their symmetries

    Ufimsk. Mat. Zh., 9:2 (2017),  40–55
  24. On the homotopy structure of compact complex homogeneous manifolds

    Izv. RAN. Ser. Mat., 80:2 (2016),  47–62
  25. On liezation of the Leibniz algebras and its applications

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 4,  14–22
  26. Compact homogeneous spaces of reductive Lie groups and spaces close to them

    Mat. Sb., 207:3 (2016),  31–46
  27. The automorphism groups of compact homogeneous spaces

    Sibirsk. Mat. Zh., 57:4 (2016),  721–745
  28. On the maximal finite-dimensional Lie algebras with given nilradical

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 2,  35–44
  29. Nilpotent sums of lie algebras, and applications

    Sibirsk. Mat. Zh., 56:2 (2015),  351–367
  30. Sub-Riemannian geometries on compact homogeneous spaces

    Izv. RAN. Ser. Mat., 78:3 (2014),  35–52
  31. On Invariant Sub-Riemannian Structures on Compact Homogeneous Spaces with Discrete Stationary Subgroup

    Mat. Zametki, 95:6 (2014),  821–829
  32. On the frames of spaces of finite-dimensional Lie algebras of dimension at most 6

    Mat. Sb., 205:5 (2014),  23–36
  33. Classification of complex simply connected homogeneous spaces of dimensions not greater than 2

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 3,  16–32
  34. Invariant distributions on compact homogeneous spaces

    Mat. Sb., 204:12 (2013),  15–30
  35. On quasicompact homogeneous spaces

    Sibirsk. Mat. Zh., 54:2 (2013),  303–319
  36. Compact homogeneous manifolds of dimension at most 7 up to a finite covering

    Izv. RAN. Ser. Mat., 76:4 (2012),  27–40
  37. On Compact Aspherical Homogeneous Manifolds of Dimension $\le7$

    Mat. Zametki, 92:2 (2012),  202–215
  38. On the intersection of irreducible components of the space of finite-dimensional Lie algebras

    Mat. Sb., 203:7 (2012),  57–78
  39. Real subalgebras in the matrix Lie algebra $M(2,\mathbf C)$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 8,  30–35
  40. On Diverse Forms of Homogeneity of Lie Algebras

    Mat. Zametki, 88:2 (2010),  178–192
  41. Some properties of the space of $n$-dimensional Lie algebras

    Mat. Sb., 200:2 (2009),  31–60
  42. Compact solvmanifolds of dimension at most 4

    Sibirsk. Mat. Zh., 50:2 (2009),  300–319
  43. Stable Cohomology of Compact Homogeneous Spaces

    Mat. Zametki, 83:6 (2008),  803–814
  44. Invariant intrinsic Finsler metrics on homogeneous spaces and strong subalgebras of Lie algebras

    Sibirsk. Mat. Zh., 49:1 (2008),  43–60
  45. Compact Homogeneous Spaces and Their Generalizations

    CMFD, 22 (2007),  38–72
  46. On the topology of the natural bundle for compact homogeneous spaces

    Izv. RAN. Ser. Mat., 71:3 (2007),  15–44
  47. Tensor Products of Algebras and Their Applications to the Construction of Anosov Diffeomorphisms

    Mat. Zametki, 82:6 (2007),  811–821
  48. Transitive Lie groups on $S^1\times S^{2m}$

    Mat. Sb., 198:9 (2007),  43–58
  49. Antinilpotent Lie Algebras

    Mat. Zametki, 78:6 (2005),  803–812
  50. On algebraic Anosov diffeomorphisms on nilmanifolds

    Sibirsk. Mat. Zh., 45:5 (2004),  995–1021
  51. Symplectic structures and cohomologies on some solvmanifolds

    Sibirsk. Mat. Zh., 44:2 (2003),  322–342
  52. On isometries of some Riemannian Lie groups

    Izv. RAN. Ser. Mat., 66:4 (2002),  27–46
  53. On the Properties of Plesio-Uniform Subgroups in Lie Groups

    Mat. Zametki, 69:3 (2001),  338–345
  54. Transitive isometry groups of aspheric Riemannian manifolds

    Sibirsk. Mat. Zh., 42:6 (2001),  1244–1258
  55. On the triviality of a natural fibration of some compact homogeneous spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 1,  15–19
  56. Thurston geometries on bases of bundles of homogeneous spaces

    Izv. RAN. Ser. Mat., 63:4 (1999),  37–58
  57. Quantitative aspect of the stabilization theorem

    Mat. Zametki, 64:5 (1998),  788–791
  58. On the level of some solvable Lie algebras

    Sibirsk. Mat. Zh., 39:5 (1998),  1013–1027
  59. On the envelopes of Abelian subgroups in connected Lie groups

    Mat. Zametki, 59:2 (1996),  200–210
  60. A Seifert bundle for a plesiocompact homogeneous space

    Sibirsk. Mat. Zh., 37:2 (1996),  301–313
  61. Anticommutative finite-dimensional algebras of the first three levels of complexity

    Algebra i Analiz, 5:3 (1993),  100–118
  62. On the double normalizer of the stable subalgebra of a plesiocompact homogeneous space

    Sibirsk. Mat. Zh., 34:3 (1993),  62–69
  63. Contractions and degenerations of finite-dimensional algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 10,  19–27
  64. The structure of homogeneous spaces with a finite invariant metric

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 7,  66–68
  65. A completeness criterion of subgroups of finite covolume in a Lie group

    Mat. Zametki, 50:6 (1991),  52–56
  66. Plesio-compact homogeneous spaces. II

    Sibirsk. Mat. Zh., 32:2 (1991),  13–25
  67. Structure of Lie groups and Lie algebras

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 41 (1990),  5–253
  68. Plesiocompact homogeneous spaces

    Sibirsk. Mat. Zh., 30:2 (1989),  61–72
  69. Some classes of homogeneous spaces that are close to compact spaces

    Dokl. Akad. Nauk SSSR, 303:4 (1988),  785–788
  70. Discrete subgroups of Lie groups

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 21 (1988),  5–120
  71. Lie groups of transformations

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 20 (1988),  103–240
  72. Curvature of a Riemannian metric on compact homogeneous manifolds

    Mat. Zametki, 43:2 (1988),  169–177
  73. On the number of Lie groups containing uniform lattices isomorphic to a given group

    Izv. Akad. Nauk SSSR Ser. Mat., 51:3 (1987),  517–533
  74. On Lie groups that are transitive on compact three-dimensional forms of reductive Lie groups

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 6,  32–37
  75. Lie groups with lattices and their properties

    Dokl. Akad. Nauk SSSR, 287:1 (1986),  33–37
  76. The construction of a simply connected Lie group with a given Lie algebra

    Uspekhi Mat. Nauk, 41:3(249) (1986),  177–178
  77. Compact homogeneous spaces with a semisimple fundamental group. II

    Sibirsk. Mat. Zh., 27:5 (1986),  38–49
  78. A criterion for the existence of a natural fibering for a compact homogeneous manifold

    Mat. Zametki, 35:2 (1984),  277–285
  79. A class of compact homogeneous spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 9,  18–21
  80. Some homotopy properties of the natural fibration for compact homogeneous manifolds

    Dokl. Akad. Nauk SSSR, 264:3 (1982),  525–528
  81. Two fibrations of a compact homogeneous space and some applications

    Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 6,  73–75
  82. On a fibering of a compact homogeneous space

    Tr. Mosk. Mat. Obs., 43 (1981),  116–141
  83. On the topological structure of compact homogeneous spaces with soluble fundamental group

    Uspekhi Mat. Nauk, 36:2(218) (1981),  181–182
  84. Compact homogeneous spaces with a semisimple fundamental group

    Sibirsk. Mat. Zh., 22:1 (1981),  47–67
  85. The topological structure of compact homogeneous manifolds

    Uspekhi Mat. Nauk, 35:3(213) (1980),  168–171
  86. On the structure of compact homogeneous spaces

    Dokl. Akad. Nauk SSSR, 249:2 (1979),  274–277
  87. Splittings of Lie groups and their application to the study of homogeneous spaces

    Izv. Akad. Nauk SSSR Ser. Mat., 43:6 (1979),  1227–1258
  88. On topological properties of compact homogeneous spaces

    Dokl. Akad. Nauk SSSR, 239:5 (1978),  1033–1036
  89. On compact homogeneous spaces of dimension 5 and higher

    Uspekhi Mat. Nauk, 33:3(201) (1978),  161–162
  90. On Lie groups, transitive on compact solvmanifolds

    Izv. Akad. Nauk SSSR Ser. Mat., 41:2 (1977),  285–307
  91. The classification of four-dimensional compact homogeneous spaces

    Uspekhi Mat. Nauk, 32:2(194) (1977),  207–208
  92. Three-dimensional homogeneous spaces

    Sibirsk. Mat. Zh., 18:2 (1977),  280–293
  93. On aspherical homogeneous spaces

    Mat. Sb. (N.S.), 100(142):2(6) (1976),  248–265
  94. On the classification of homogeneous spaces

    Dokl. Akad. Nauk SSSR, 216:5 (1974),  968–970
  95. On a class of decompositions of semisimple Lie groups and algebras

    Mat. Sb. (N.S.), 95(137):2(10) (1974),  294–304
  96. Generalized Lyapunov theorem on Mal'tsev manifolds

    Mat. Sb. (N.S.), 94(136):2(6) (1974),  163–177
  97. Lattices in solvable Lie groups and deformations of homogeneous spaces

    Mat. Sb. (N.S.), 91(133):2(6) (1973),  234–252
  98. Discrete subgroups of solvable Lie groups of type $(E)$

    Mat. Sb. (N.S.), 85(127):2(6) (1971),  238–255

  99. Letter to the Editor

    Mat. Zametki, 115:1 (2024),  156
  100. Arkadii L'vovich Onishchik (obituary)

    Uspekhi Mat. Nauk, 75:4(454) (2020),  195–206
  101. Arkadii L'vovich Onishchik (on his 70th birthday)

    Uspekhi Mat. Nauk, 58:6(354) (2003),  193–200
  102. Поправки к статье “О классификации однородных пространств” (ДАН, т. 216, № 5, 1974 г.)

    Dokl. Akad. Nauk SSSR, 220:3 (1975),  10


© Steklov Math. Inst. of RAS, 2026