RUS  ENG
Full version
PEOPLE

Chentsov Alexander Georgievich

Publications in Math-Net.Ru

  1. Multi-level dynamic programming in routing problems with constraints

    Izv. IMI UdGU, 66 (2025),  115–165
  2. Attraction sets in the abstract problem of reachability in topological space

    Izv. IMI UdGU, 65 (2025),  85–108
  3. Attraction sets in abstract reachability problems

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:2 (2025),  294–315
  4. Dynamic programming and decomposition in extreme routing problems

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:1 (2025),  247–272
  5. Attraction sets in attainability problems with asymptotic-type constraints

    Ural Math. J., 11:1 (2025),  25–45
  6. Attraction sets in abstract attainability problems and their representations in terms of ultrafilters

    Russian Universities Reports. Mathematics, 30:152 (2025),  392–424
  7. Some questions related to the extension of reachability problems in the class of finitely additive measures

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:3 (2024),  293–313
  8. On the International Conference “System Analysis: Modeling and Control” dedicated to the 75th birthday of A. V. Kryazhimskii

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:2 (2024),  300–302
  9. Continuous dependence of sets in a space of measures and a program minimax problem

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:2 (2024),  277–299
  10. Some questions connected with implementation of attraction sets accurate to a predetermined neighborhood

    Russian Universities Reports. Mathematics, 29:147 (2024),  352–376
  11. Some constructions for solving routing problems using decompositions and transformations of target sets

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 34:4 (2024),  518–540
  12. The routing bottlenecks problem (optimization within zones)

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 34:2 (2024),  267–285
  13. Two-stage dynamic programming in the routing problem with decomposition

    Avtomat. i Telemekh., 2023, no. 5,  133–164
  14. Minimax routing problem with a system of priority tasks

    Izv. IMI UdGU, 62 (2023),  96–124
  15. A bottleneck routing problem with a system of priority tasks

    Izv. IMI UdGU, 61 (2023),  156–186
  16. Closed Mappings and Construction of Extension Models

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:3 (2023),  274–295
  17. Some Properties of Ultrafilters Related to Their Use As Generalized Elements

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:2 (2023),  271–286
  18. About topological properties of attraction set in ultrafilter space

    Russian Universities Reports. Mathematics, 28:143 (2023),  335–356
  19. On the application of the minimax traveling salesman problem in aviation logistics

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 16:3 (2023),  20–34
  20. Optimal routing in problems of sequential traversal of megapolises in the presence of constraints

    Chelyab. Fiz.-Mat. Zh., 7:2 (2022),  209–233
  21. Linkedness of families of sets, supercompactness, and some generalizations

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 208 (2022),  79–90
  22. An extremal two-stage routing problem and procedures based on dynamic programming

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022),  215–248
  23. Dynamic programming in the routing problem: decomposition variant

    Russian Universities Reports. Mathematics, 27:137 (2022),  95–124
  24. Dynamic programming and questions of solvability of route bottleneck problem with resource constraints

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:4 (2022),  569–592
  25. Some applications of optimization routing problems with additional constraints

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:2 (2022),  187–210
  26. On one routing problem oriented on the problem of dismantling radiation-hazardous objects

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:3 (2022),  83–95
  27. One task of routing jobs in high radiation conditions

    Izv. IMI UdGU, 58 (2021),  94–126
  28. The program iteration method and the relaxation problem

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:3 (2021),  211–226
  29. On the Relaxation of a Game Problem of Approach with Priority Elements

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:2 (2021),  281–297
  30. Guidance–Evasion Differential Game: Alternative Solvability and Relaxations of the Guidance Problem

    Trudy Mat. Inst. Steklova, 315 (2021),  284–303
  31. Products of ultrafilters and maximal linked systems on widely understood measurable spaces

    Ural Math. J., 7:2 (2021),  3–32
  32. Maximal linked systems on products of widely understood measurable spaces

    Russian Universities Reports. Mathematics, 26:134 (2021),  182–215
  33. Maximal linked systems on families of measurable rectangles

    Russian Universities Reports. Mathematics, 26:133 (2021),  77–104
  34. On properties of one functional used in software constructions for solving differential games

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:4 (2021),  668–696
  35. On sequential traversal of sets

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:3 (2021),  487–504
  36. Relaxation of the attainability problem for a linear control system of neutral type

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:1 (2021),  70–88
  37. Some questions of differential game theory with phase constraints

    Izv. IMI UdGU, 56 (2020),  138–184
  38. Some topological properties of the space of maximal linked systems with topology of Wallman type

    Izv. IMI UdGU, 56 (2020),  122–137
  39. To the question of optimization of the starting point in the routing problem with restrictions

    Izv. IMI UdGU, 55 (2020),  135–154
  40. On certain analogues of linkedness and supercompactness

    Izv. IMI UdGU, 55 (2020),  113–134
  41. To question on some generalizations of properties of cohesion of families of sets and supercompactness of topological spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 11,  65–80
  42. On the Problem of Sequential Traversal of Megalopolises with Precedence Conditions and Cost Functions Depending on a List of Tasks

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:3 (2020),  219–234
  43. Ultrafilters and maximal linked systems

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:1 (2020),  274–292
  44. On routing problem with starting point optimization

    Ural Math. J., 6:2 (2020),  44–62
  45. Relaxation of the game problem of guidance connected with alternative in guidance-evasion differential game

    Russian Universities Reports. Mathematics, 25:130 (2020),  196–244
  46. Maximal linked systems and ultrafilters: main representations and topological properties

    Russian Universities Reports. Mathematics, 25:129 (2020),  68–84
  47. Filters and linked families of sets

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:3 (2020),  444–467
  48. Ultrafilters as admissible generalized elements under asymptotic constraints

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:2 (2020),  312–323
  49. Relaxation of pursuit-evasion differential game and program absorption operator

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:1 (2020),  64–91
  50. On one routing problem with non-additive cost aggregation

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:1 (2020),  64–80
  51. The routing problems with optimization of the starting point: dynamic programming

    Izv. IMI UdGU, 54 (2019),  102–121
  52. On the supercompactness of ultrafilter space with the topology of Wallman type

    Izv. IMI UdGU, 54 (2019),  74–101
  53. Ultrafilters and maximal linked systems: basic relations

    Izv. IMI UdGU, 53 (2019),  138–157
  54. On the Construction of a Nonanticipating Selection of a Multivalued Mapping

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:3 (2019),  232–246
  55. Supercompact spaces of ultrafilters and maximal linked systems

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:2 (2019),  240–257
  56. The Programmed Iteration Method in a Game Problem of Realizing Trajectories in a Function Set

    Trudy Mat. Inst. Steklova, 304 (2019),  309–325
  57. To a question on the supercompactness of ultrafilter spaces

    Ural Math. J., 5:1 (2019),  31–47
  58. Constraints of asymptotic nature and attainability problems

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:4 (2019),  569–582
  59. On the question of the optimization of permutations in the problem with dynamic constraints

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:3 (2019),  363–381
  60. On one routing task with the optimization of the start–finish point

    Izv. IMI UdGU, 52 (2018),  103–115
  61. Ultrafilters and maximal linked systems: basic properties and topological constructions

    Izv. IMI UdGU, 52 (2018),  86–102
  62. Relaxation of the Pursuit–Evasion Differential Game and Iterative Methods

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:4 (2018),  246–269
  63. Bitopological spaces of ultrafilters and maximal linked systems

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:1 (2018),  257–272
  64. Optimizing the starting point in a precedence constrained routing problem with complicated travel cost functions

    Ural Math. J., 4:2 (2018),  43–55
  65. Maximal linked systems and ultrafilters of widely understood measurable spaces

    Tambov University Reports. Series: Natural and Technical Sciences, 23:124 (2018),  846–860
  66. On the existence of a non-anticipating selection of non-anticipating multivalued mapping

    Tambov University Reports. Series: Natural and Technical Sciences, 23:124 (2018),  717–725
  67. Optimizing multi-inserts in routing problems with constraints

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:4 (2018),  513–530
  68. Dynamic programming in the generalized bottleneck problem and the start point optimization

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:3 (2018),  348–363
  69. The Wallman compactifier and its application for investigation of the abstract attainability problem

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:2 (2018),  199–212
  70. A problem of program maximin with constraints of asymptotic nature

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:1 (2018),  91–110
  71. Optimization of the start point in the GTSP with the precedence conditions

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:2 (2018),  83–95
  72. Solving a routing problem with the aid of an independent computations scheme

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:1 (2018),  60–74
  73. Elements of dynamic programming in local improvement constructions for heuristic solutions of routing problems with constraints

    Avtomat. i Telemekh., 2017, no. 4,  106–125
  74. A model variant of the problem about radiation sources utilization (iterations based on optimization insertions)

    Izv. IMI UdGU, 50 (2017),  83–109
  75. Superextension as bitopological space

    Izv. IMI UdGU, 49 (2017),  55–79
  76. Iterations of stability and the evasion problem with a constraint on the number of switchings of the formed control

    Izv. IMI UdGU, 49 (2017),  17–54
  77. Stability iterations and an evasion problem with a constraint on the number of switchings

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:2 (2017),  285–302
  78. A discrete-continuous routing problem with precedence conditions

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:1 (2017),  275–292
  79. Some representations connected with ultrafilters and maximal linked systems

    Ural Math. J., 3:2 (2017),  100–121
  80. On one routing problem modeling movement in radiation fields

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:4 (2017),  540–557
  81. Ultrafilters and maximal linked systems

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:3 (2017),  365–388
  82. About routing in the sheet cutting

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:3 (2017),  25–39
  83. Routing under constraints: problem of visit to megalopolises

    Avtomat. i Telemekh., 2016, no. 11,  96–117
  84. Implementation of the programmed iterations method in packages of spaces

    Izv. IMI UdGU, 2016, no. 2(48),  42–67
  85. A problem of attainability with constraints of asymptotic nature

    Izv. IMI UdGU, 2016, no. 1(47),  54–118
  86. Routization problem complicated by the dependence of costs functions and «current» restrictions from the tasks list

    Model. Anal. Inform. Sist., 23:2 (2016),  211–227
  87. Open ultrafilters and separability with the use of the operation of closure

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:3 (2016),  212–225
  88. The program iteration method in a game problem of guidance

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016),  304–321
  89. Compactifiers in extension constructions for reachability problems with constraints of asymptotic nature

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016),  294–309
  90. The program iterations method in game problem of guidance and set-valued quasistrategies

    Ural Math. J., 2:1 (2016),  17–37
  91. The Bellmann insertions in route problems with constraints and complicated cost functions. II

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:4 (2016),  565–578
  92. Some representations of free ultrafilters

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:3 (2016),  345–365
  93. The programmed iterations method in a game problem of guidance

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:2 (2016),  271–282
  94. Routing of displacements with dynamic constraints: “bottleneck problem”

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:1 (2016),  121–140
  95. The elements of the operator convexity in the construction of the programmed iteration method

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:3 (2016),  82–93
  96. Generalized model of courier with additional restrictions

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:1 (2016),  46–58
  97. Some properties of open ultrafilters

    Izv. IMI UdGU, 2015, no. 2(46),  140–148
  98. About a routing problem of the tool motion on sheet cutting

    Model. Anal. Inform. Sist., 22:2 (2015),  278–294
  99. On a routing problem with constraints that include dependence on a task list

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015),  178–195
  100. An exact algorithm with linear complexity for a problem of visiting megalopolises

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015),  309–317
  101. An abstract reachability problem: “purely asymptotic” version

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:2 (2015),  289–305
  102. On an asymptotic analysis problem related to the construction of an attainability domain

    Trudy Mat. Inst. Steklova, 291 (2015),  292–311
  103. Programmed iteration method and operator convexity in an abstract retention problem

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:3 (2015),  348–366
  104. To question about realization of attraction elements in abstract attainability problems

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:2 (2015),  212–229
  105. On extension of the maximin problem

    Avtomat. i Telemekh., 2014, no. 7,  155–174
  106. Problem of successive megalopolis traversal with the precedence conditions

    Avtomat. i Telemekh., 2014, no. 4,  170–190
  107. Some topological structures of extensions of abstract reachability problems

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:4 (2014),  312–329
  108. On the question of construction of an attraction set under constraints of asymptotic nature

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:3 (2014),  309–323
  109. On the structure of ultrafilters and properties related to convergence in topological spaces

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014),  250–267
  110. Ultrafilters of measurable spaces and their application in extension constructions

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014),  285–304
  111. The Bellmann insertions in the route problem with constraints and complicated cost functions

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 4,  122–141
  112. To the validity of constraints in the class of generalized elements

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 3,  90–109
  113. Local dynamic programming incuts in routing problems with restrictions

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 2,  56–75
  114. Some ultrafilter properties connected with extension constructions

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 1,  87–101
  115. On certain problems of the structure of ultrafilters related to extensions of abstract control problems

    Avtomat. i Telemekh., 2013, no. 12,  119–139
  116. Attraction sets in abstract attainability problems: equivalent representations and basic properties

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 11,  33–50
  117. Elements of dynamic programming in extremal route problems

    Probl. Upr., 2013, no. 5,  12–21
  118. On the question of representation of ultrafilters and their application in extension constructions

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:4 (2013),  289–307
  119. On the question of representation of ultrafilters in a product of measurable spaces

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:2 (2013),  307–319
  120. To question about representation of Stone compactums

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013, no. 4,  156–174
  121. The iterations method in generalized courier problem with singularity in the definition of cost functions

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013, no. 3,  88–113
  122. To question of routing of works complexes

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013, no. 1,  59–82
  123. On the Nonstationary Variant of Generalized Courier Problem with Interior Works

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:2 (2013),  88–107
  124. On a parallel procedure for constructing the Bellman function in the generalized problem of courier with internal jobs

    Avtomat. i Telemekh., 2012, no. 3,  134–149
  125. Dynamic programming in a nonstationary route problem

    Izv. IMI UdGU, 2012, no. 1(39),  151–154
  126. To the question about structure of attraction set in a topological space

    Izv. IMI UdGU, 2012, no. 1(39),  147–150
  127. Representation of attraction elements in abstract attainability problems with asymptotic constraints

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 10,  45–59
  128. On a Nonstationary Route Problem with Constraints

    Model. Anal. Inform. Sist., 19:4 (2012),  5–24
  129. Tier mappings and ultrafilter-based transformations

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:4 (2012),  298–314
  130. On an iterative procedure for solving a routing problem with constraints

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:3 (2012),  261–281
  131. On a routing problem with internal tasks

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:1 (2012),  298–317
  132. About an example of the attraction set construction with employment of Stone space

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 4,  108–124
  133. The transformation of ultrafilters and their application in constructions of attraction sets

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 3,  85–102
  134. About one route problem with interior works

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 1,  96–119
  135. A Parallel Procedure of Constructing Bellman Function in the Generalized Courier Problem with Interior Works

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 12,  53–76
  136. On approximate constraint satisfaction

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 2,  86–102
  137. Dynamic programming in a generalized courier problem with inner tasks: elements of a parallel structure

    Model. Anal. Inform. Sist., 18:3 (2011),  101–124
  138. On one example of representing the ultrafilter space for an algebra of sets

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011),  293–311
  139. One representation of the results of action of approximate solutions in a problem with constraints of asymptotic nature

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:2 (2011),  225–239
  140. Ultrafilters of measurable spaces as generalized solutions in abstract attainability problems

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:1 (2011),  268–293
  141. About correctness of some problems of control by material point

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011, no. 3,  127–141
  142. Filters and ultrafilters in the constructions of attraction sets

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011, no. 1,  113–142
  143. On a generalization of one game control problem in the class of finitely additive measures

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 7,  86–102
  144. An extremal constrained routing problem with internal losses

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 6,  64–81
  145. To the question about stability of attainability domain in abstract problem with constraints of the moment character

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:5 (2010),  205–212
  146. Routing with an abstract function of travel cost aggregation

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010),  240–264
  147. One bottleneck routing problem

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:1 (2010),  152–170
  148. On obeying constraints of asymptotic character

    Trudy Mat. Inst. Steklova, 271 (2010),  59–75
  149. About presentation of maximin in the game problem with constraints of asymptotic character

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2010, no. 3,  104–119
  150. To the question about precise and approximate validity in abstract control problem

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2010, no. 2,  29–48
  151. Finitely additive measures and extensions of the game problems with constraints of asymptotic character

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2010, no. 1,  89–111
  152. Iteration method in the routing problem with internal losses

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:4 (2009),  270–289
  153. On the result equivalence of constraints of asymptotic nature

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:3 (2009),  241–261
  154. Some properties of the operator of the measure extension

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2009, no. 3,  114–127
  155. Extensions in the class of finitely additive measures and conditions of asymptotic non-sensitivity under a weakening of the part of constraints

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2009, no. 1,  131–152
  156. Quasistrategies in an abstract guidance control problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 10,  55–69
  157. Extension of the abstract attainability problem using the Stone representation space

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 3,  63–75
  158. Extremal routing problem with internal losses

    Trudy Inst. Mat. i Mekh. UrO RAN, 14:3 (2008),  183–201
  159. Extremal bottleneck routing problem with constraints in the form of precedence conditions

    Trudy Inst. Mat. i Mekh. UrO RAN, 14:2 (2008),  129–142
  160. The space of Stone representation and constructions of extensions

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 2,  169–172
  161. Construction of limiting process operations using ultrafilters of measurable spaces

    Avtomat. i Telemekh., 2007, no. 11,  208–222
  162. Generalized elements in problem on asymptotic attainability

    Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 11,  56–70
  163. О реализации метода динамического программирования в обобщенной задаче курьера

    Trudy Inst. Mat. i Mekh. UrO RAN, 13:3 (2007),  136–160
  164. Extensions of abstract problems of attainability: Nonsequential version

    Trudy Inst. Mat. i Mekh. UrO RAN, 13:2 (2007),  184–217
  165. Certain problems of asymptotic analysis and extensions. II

    Avtomat. i Telemekh., 2006, no. 1,  128–145
  166. Extreme problems of routing with restrictions

    Izv. IMI UdGU, 2006, no. 3(37),  163–166
  167. On the compactification of a pencil of trajectories of an abstract control system

    Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 5,  55–66
  168. Nonsequential approximate solutions in abstract problems of attainability

    Trudy Inst. Mat. i Mekh. UrO RAN, 12:1 (2006),  216–241
  169. On the structure of an extremal problem of rout optimization with constraints in the form of precedence conditions

    Vestn. Udmurtsk. Univ. Mat., 2006, no. 1,  127–150
  170. Certain problems of asymptotic analysis and extensions. I

    Avtomat. i Telemekh., 2005, no. 12,  125–142
  171. On a Control Problem with Incomplete Information: Quasistrategies and Control Procedures with a Model

    Differ. Uravn., 41:12 (2005),  1652–1666
  172. On a representation of a pencil of admissible trajectories in a linear control problem with an impulse constraint

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 12,  15–27
  173. Quasistrategies in an abstract control problem and the method of programmed iterations (a direct version)

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 11,  53–65
  174. Approximate solutions in the problem of asymptotic attainability

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 8,  63–73
  175. An abstract confinement problem: a programmed iterations method of solution

    Avtomat. i Telemekh., 2004, no. 2,  157–169
  176. On the construction of an asymptotic analog of a pencil of trajectories for a linear system with a single-impulse control

    Differ. Uravn., 40:12 (2004),  1645–1657
  177. Generalized attraction sets and approximate solutions forming them

    Trudy Inst. Mat. i Mekh. UrO RAN, 10:2 (2004),  178–196
  178. A Version of the Program Iteration Method

    Differ. Uravn., 39:8 (2003),  1076–1086
  179. Недираковские $(0,1)$-меры и $\sigma$-топологические пространства

    Vestnik Chelyabinsk. Gos. Univ., 2003, no. 8,  190–202
  180. On Solution of the Problem of Successive Round of Sets by the “Nonclosed” Travelling Salesman Problem

    Avtomat. i Telemekh., 2002, no. 11,  151–166
  181. Dynamic Programming in the Problem of Decomposition Optimization

    Avtomat. i Telemekh., 2002, no. 5,  133–146
  182. Some questions of the structure of the programmed iterations method

    Fundam. Prikl. Mat., 8:3 (2002),  921–942
  183. On the construction of correct extensions in the class of finitely additive measures

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 2,  58–80
  184. Nonanticipating Multimappings and Their Construction by the Method of Program Iterations: II

    Differ. Uravn., 37:5 (2001),  679–688
  185. Nonanticipating Multimappings and Their Construction by the Method of Program Iterations: I

    Differ. Uravn., 37:4 (2001),  470–480
  186. On the duality of various versions of the programmed iteration method

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 12,  77–88
  187. Reduction of route optimization problems

    Avtomat. i Telemekh., 2000, no. 10,  136–150
  188. On the construction of a procedure for partitioning a finite set, based on the dynamic programming method

    Avtomat. i Telemekh., 2000, no. 4,  129–142
  189. On the iterative realization of nonanticipating multivalued mappings

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 3,  66–76
  190. Universal version of generalized integral constraints in the class of finitely additive measures. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 2,  69–77
  191. Topological constructions of extensions and representations of attraction sets

    Trudy Inst. Mat. i Mekh. UrO RAN, 6:1 (2000),  247–276
  192. Well-posed extensions of unstable control problems with integral constraints

    Izv. RAN. Ser. Mat., 63:3 (1999),  185–223
  193. Universal version of generalized integral constraints in the class of finitely additive measures. I

    Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 7,  67–74
  194. An Iterative Procedure for Constructing Minimax and Viscosity Solutions to the Hamilton–Jacobi Equations and Its Generalization

    Trudy Mat. Inst. Steklova, 224 (1999),  311–334
  195. Обобщенные траектории линейных управляемых систем с разрывными коэффициентами при управлении

    Vestnik Chelyabinsk. Gos. Univ., 1999, no. 5,  137–146
  196. On the solution of the route optimization problem by the dynamic programming method

    Avtomat. i Telemekh., 1998, no. 9,  117–129
  197. The universal asymptotic realization of integral constraints and constructions of extension in the class of finitely additive measures

    Trudy Inst. Mat. i Mekh. UrO RAN, 5 (1998),  328–356
  198. On extension of stochastic constraints in the class of finitely additive probabilities

    Trudy Inst. Mat. i Mekh. UrO RAN, 5 (1998),  277–300
  199. To the Routing of Connections

    Avtomat. i Telemekh., 1997, no. 12,  175–192
  200. An Extension of Control Problem in the Class of Vector Finitely Additive Measures

    Avtomat. i Telemekh., 1997, no. 7,  207–216
  201. The program iteration method in the class of finitely additive control measures

    Differ. Uravn., 33:11 (1997),  1528–1536
  202. On extension of stochastic constraints in the class of finite-additive probabilities

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 6,  57–69
  203. On a Problem of Route Optimization and Its Applications

    Probl. Peredachi Inf., 33:4 (1997),  70–87
  204. On a construction of an extension of an abstract, purely pulse control problem

    Zh. Vychisl. Mat. Mat. Fiz., 37:5 (1997),  524–532
  205. An iterative procedure for constructing minimax and viscosity solutions of the Hamilton–Jacobi equations

    Dokl. Akad. Nauk, 348:6 (1996),  736–739
  206. Finitely additive vector measures and the regularization questions in the problem about constructing of the sets of asymptotic attainability

    Trudy Inst. Mat. i Mekh. UrO RAN, 4 (1996),  266–295
  207. К вопросу об условиях асимптотической нечувствительности достижимого множества при возмущении части ограничений

    Vestnik Chelyabinsk. Gos. Univ., 1996, no. 3,  189–205
  208. К вопросу о расширении некоторых вольтерровых операторов в классе конечно-аддитивных мер

    Vestnik Chelyabinsk. Gos. Univ., 1996, no. 3,  117–134
  209. К вопросу о конструкции расширения в одном классе экстремальных задач

    Vestnik Chelyabinsk. Gos. Univ., 1996, no. 3,  15–20
  210. On correct extension of some stochastically constrained problems

    Avtomat. i Telemekh., 1995, no. 7,  68–79
  211. The problem of constructing sets of asymptotic attainability and its regularization

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 10,  61–75
  212. Asymptotic attainability with perturbation of integral constraints in an abstract control problem. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 3,  62–73
  213. Asymptotic attainability with perturbation of integral constraints in an abstract control problem. I

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 2,  60–71
  214. On the correct extension of a problem of selecting the probability density under constraints on a system of mathematical expectations

    Uspekhi Mat. Nauk, 50:5(305) (1995),  223–242
  215. The asymptotically attainable elements and their generalized representation in class of finitely additive measures

    Trudy Inst. Mat. i Mekh. UrO RAN, 3 (1995),  211–244
  216. Asymptotically attainable elements: Generalized constructions and the realization in the class of approximate solutions

    Trudy Mat. Inst. Steklov., 211 (1995),  443–456
  217. On a generalization of the bottleneck traveling salesman problem

    Zh. Vychisl. Mat. Mat. Fiz., 35:7 (1995),  1067–1076
  218. Dynamic programming in the problem of covering optimization

    Avtomat. i Telemekh., 1994, no. 3,  54–64
  219. Asymptotic attainability and its generalized representation

    Dokl. Akad. Nauk, 334:4 (1994),  437–440
  220. On the regularization of the function of the asymptotic value of a control problem under perturbation of the set of initial positions

    Differ. Uravn., 30:11 (1994),  1939–1948
  221. Асимптотика достижимых множеств и обобщенные конструкции в классе конечно-аддитивных мер

    Vestnik Chelyabinsk. Gos. Univ., 1994, no. 2,  126–135
  222. Об одной задаче асимптотической оптимизации

    Vestnik Chelyabinsk. Gos. Univ., 1994, no. 2,  80–87
  223. On a programmed linear game-theoretic guidance problem with constraints on the control force impulse

    Avtomat. i Telemekh., 1993, no. 5,  61–74
  224. Asymptotically admissible elements: insensitivity to disturbance of some of the conditions and physical realizability

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 5,  112–123
  225. An assignment problem

    Zh. Vychisl. Mat. Mat. Fiz., 33:4 (1993),  483–494
  226. Stability of some nonlinear extremal problems with actions of an impulse nature

    Avtomat. i Telemekh., 1992, no. 5,  30–41
  227. On a regularization procedure for a function of the value of a nonlinear control problem

    Differ. Uravn., 28:3 (1992),  414–422
  228. Relaxation of constraints in multi-objective problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 7,  3–8
  229. On the asymptotic equivalence of relaxations of extremal problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 6,  53–60
  230. On decomposition of the process of successive choice of variants

    Mat. Model., 3:4 (1991),  103–113
  231. Релаксация некоторых экстремальных задач с интегральными ограничениями

    Vestnik Chelyabinsk. Gos. Univ., 1991, no. 1,  37–47
  232. Asymptotic effectiveness and extensions in a class of finitely additive measures

    Dokl. Akad. Nauk SSSR, 314:5 (1990),  1085–1087
  233. On a construction of an extension of a control problem with integral constraints

    Differ. Uravn., 26:4 (1990),  607–618
  234. Discrete-time control in mathematical programming problems dual to successive adaptation problems

    Avtomat. i Telemekh., 1989, no. 2,  47–56
  235. Some topological properties of generalized solutions of nonlinear control systems

    Differ. Uravn., 25:11 (1989),  2004–2005
  236. A modification of the dynamic programming method for the travelling-salesman problem

    Zh. Vychisl. Mat. Mat. Fiz., 29:8 (1989),  1107–1113
  237. Duality and dynamic programming in the control of simple motion

    Zh. Vychisl. Mat. Mat. Fiz., 29:4 (1989),  614–616
  238. A problem of sequential optimization under convex constraints

    Upravliaemie systemy, 1988, no. 28,  12–20
  239. Certain properties of two-valued measures and the conditions of universal integrability

    Mat. Zametki, 42:2 (1987),  288–297
  240. On the control of discrete systems in an infinite time interval

    Zh. Vychisl. Mat. Mat. Fiz., 27:12 (1987),  1780–1789
  241. Optimal performance of specified motions of a linear discrete system with bounded resources

    Avtomat. i Telemekh., 1986, no. 6,  56–61
  242. On the question of universal integrability of bounded functions

    Mat. Sb. (N.S.), 131(173):1(9) (1986),  73–93
  243. A class of linear differential games with a constraint on the number of switchings

    Differ. Uravn., 20:8 (1984),  1442
  244. A linear differential game of approach with a nonconvex target set

    Differ. Uravn., 20:4 (1984),  593–597
  245. On an alternative in a class of quasistrategies for a differential approach-evasion game

    Differ. Uravn., 16:10 (1980),  1801–1808
  246. A class of differential games in mixed strategies

    Differ. Uravn., 16:10 (1980),  1794–1800
  247. An iterative program construction for a differential game with fixed termination time

    Dokl. Akad. Nauk SSSR, 240:1 (1978),  36–39
  248. On the game problem of convergence at a given moment of time

    Izv. Akad. Nauk SSSR Ser. Mat., 42:2 (1978),  455–467
  249. The value of a differential game with generalized payoff

    Dokl. Akad. Nauk SSSR, 237:1 (1977),  41–43
  250. On a game problem on the minimax functional

    Dokl. Akad. Nauk SSSR, 230:5 (1976),  1047–1050
  251. On a game problem of guidance with information memory

    Dokl. Akad. Nauk SSSR, 227:2 (1976),  306–308
  252. On a game problem of guidance

    Dokl. Akad. Nauk SSSR, 226:1 (1976),  73–76
  253. Maximin deviation in a differential game

    Differ. Uravn., 12:5 (1976),  848–856
  254. On a game problem of converging at a given instant of time

    Mat. Sb. (N.S.), 99(141):3 (1976),  394–420
  255. The structure of a certain game-theoretic approach problem

    Dokl. Akad. Nauk SSSR, 224:6 (1975),  1272–1275
  256. A condition for a maximin in a game problem of programmed control

    Dokl. Akad. Nauk SSSR, 221:1 (1975),  48–51
  257. A certain approximation of a differential game in mixed strategies

    Differ. Uravn., 11:10 (1975),  1732–1737
  258. On a programmed construction in a positional differential game

    Izv. Akad. Nauk SSSR Ser. Mat., 39:4 (1975),  926–936
  259. On stability conditions for a differential game

    Dokl. Akad. Nauk SSSR, 215:4 (1974),  800–803
  260. On a game problem of programmed control

    Dokl. Akad. Nauk SSSR, 213:2 (1973),  289–292

  261. Evgeny Georgievich Pytkeev

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:1 (2025),  9–18
  262. Nikolai Nikandrovich Petrov. To anniversary

    Izv. IMI UdGU, 62 (2023),  3–9
  263. Yurii Nikolaevich Subbotin (A Tribute to His Memory)

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022),  9–16
  264. In memory of professor Alexander Ivanovich Bulgakov

    Russian Universities Reports. Mathematics, 25:129 (2020),  100–102
  265. In memory of Arkady Viktorovich Kryazhimskiy (1949-2014)

    Ural Math. J., 2:2 (2016),  3–15
  266. A model of “nonadditive” routing problem where the costs depend on the set of pending tasks

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:1 (2015),  24–45
  267. Ivan Ivanovich Eremin

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014),  5–12
  268. In memory of Evgenii Leonidovich Tonkov (27.06.1940–28.09.2014)

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 4,  146–154
  269. In memory of Nikolai Nikolaevich Krasovskii (07.09.1924 – 04.04.2012)

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 3,  157–158
  270. To the 75th anniversary of academician of Russian Academy of Sciences Yu. S. Osipov

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:2 (2011),  5–6
  271. Aleksandr Borisovich Kurzhanskii (on the occasion of his 70th birthday)

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:4 (2009),  5–9
  272. Andrei Izmailovich Subbotin (Memorial issue)

    Trudy Inst. Mat. i Mekh. UrO RAN, 6:1 (2000),  3–26


© Steklov Math. Inst. of RAS, 2026