RUS  ENG
Full version
PEOPLE

Kon'kov Andrej Alexandrovich

Publications in Math-Net.Ru

  1. On existence of global solutions of second-order quasilinear elliptic inequalities

    Mat. Zametki, 118:5 (2025),  725–738
  2. On a Dini type blow-up condition for solutions of higher order nonlinear differential inequalities

    Dokl. RAN. Math. Inf. Proc. Upr., 518 (2024),  18–21
  3. On global solutions of second-order quasilinear elliptic inequalities

    Mat. Zametki, 116:5 (2024),  759–765
  4. On the Existence of Solutions of the Dirichlet Problem for the $p$-Laplacian on Riemannian Manifolds

    Mat. Zametki, 114:5 (2023),  659–668
  5. On the absence of global solutions of a system of ordinary differential equations

    Mat. Sb., 213:3 (2022),  41–63
  6. Comparison theorems for elliptic inequalities with lower-order derivatives that take into account the geometry of the domain

    Dokl. RAN. Math. Inf. Proc. Upr., 500 (2021),  35–39
  7. Existence of Solutions to the Second Boundary-Value Problem for the $p$-Laplacian on Riemannian Manifolds

    Mat. Zametki, 109:2 (2021),  180–195
  8. Geometric estimates of solutions of quasilinear elliptic inequalities

    Izv. RAN. Ser. Mat., 84:6 (2020),  23–72
  9. On the stabilization of solutions of nonlinear parabolic equations with lower-order derivatives

    Tr. Semim. im. I. G. Petrovskogo, 32 (2019),  220–238
  10. On the Absence of Global Solutions of a Class of Higher-Order Evolution Inequalities

    Mat. Zametki, 104:6 (2018),  945–947
  11. Blow-up of solutions for a class of nondivergence elliptic inequalities

    Zh. Vychisl. Mat. Mat. Fiz., 57:3 (2017),  448–458
  12. On Estimates of Solutions to Elliptic Inequalities near a Singular Point

    Mat. Zametki, 99:4 (2016),  623–625
  13. Maximum principle for nonlinear parabolic equations

    Tr. Semim. im. I. G. Petrovskogo, 31 (2016),  63–86
  14. On the maximum principle for a class of nonlinear parabolic equations

    Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2015, no. 6(128),  89–92
  15. On comparison theorems for quasi-linear elliptic inequalities with a special account of the geometry of the domain

    Izv. RAN. Ser. Mat., 78:4 (2014),  123–174
  16. Scientific heritage of Vladimir Mikhailovich Millionshchikov

    Tr. Semim. im. I. G. Petrovskogo, 30 (2014),  5–41
  17. Stabilization of solutions of the nonlinear Fokker–Planck equation

    Tr. Semim. im. I. G. Petrovskogo, 29 (2013),  333–345
  18. Comparison Theorems for Quasilinear Elliptic Inequalities

    Mat. Zametki, 87:4 (2010),  630–631
  19. On the absence of global solutions of the radial $p$-Laplace equation

    Uspekhi Mat. Nauk, 63:1(379) (2008),  161–162
  20. Solutions of ordinary differential equations with vertical asymptote

    Mat. Sb., 199:1 (2008),  3–14
  21. The behaviour of solutions of elliptic inequalities that are non-linear with respect to the highest derivatives

    Izv. RAN. Ser. Mat., 71:1 (2007),  17–54
  22. On properties of solutions of a class of nonlinear ordinary differential equations

    Tr. Semim. im. I. G. Petrovskogo, 26 (2007),  195–222
  23. Behavior of Solutions of Quasilinear Elliptic Inequalities

    CMFD, 7 (2004),  3–158
  24. Comparison theorems for elliptic divergence inequalities containing terms with lower derivatives

    Uspekhi Mat. Nauk, 59:5(359) (2004),  151–152
  25. A Priori Estimates for Solutions of Ordinary Differential Equations of Emden–Fowler Type

    Mat. Zametki, 73:5 (2003),  792–796
  26. Comparison theorems for elliptic inequalities with a non-linearity in the principal part

    Uspekhi Mat. Nauk, 57:3(345) (2002),  141–142
  27. On solutions of non-autonomous ordinary differential equations

    Izv. RAN. Ser. Mat., 65:2 (2001),  81–126
  28. Nonnegative solutions of quasilinear elliptic inequalities in domains contained in a layer

    Differ. Uravn., 36:7 (2000),  889–897
  29. On solutions of quasilinear elliptic inequalities vanishing in a neighborhood of infinity

    Mat. Zametki, 67:1 (2000),  153–156
  30. On non-negative solutions of quasilinear elliptic inequalities

    Izv. RAN. Ser. Mat., 63:2 (1999),  41–126
  31. Behavior of solutions of quasilinear elliptic inequalities containing terms with lower-order derivatives

    Mat. Zametki, 64:6 (1998),  946–949
  32. On growing solutions of nonlinear ordinary differential equations

    Mat. Zametki, 62:5 (1997),  792–795
  33. Singular solutions of nonlinear ordinary differential equations

    Mat. Zametki, 60:4 (1996),  616–620
  34. Behavior at infinity of solutions of second-order nonlinear equations of a particular class

    Mat. Zametki, 60:1 (1996),  30–39
  35. On the solution space of elliptic equations on Riemannian manifolds

    Differ. Uravn., 31:5 (1995),  805–813
  36. Maximum principle for elliptic equations on smooth Riemannian manifolds

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 4,  10–14
  37. On properties of solutions of a class of nonlinear second-order equations

    Mat. Sb., 185:9 (1994),  81–94
  38. On the dimension of the solution space of elliptic systems in unbounded domains

    Mat. Sb., 184:12 (1993),  23–52

  39. К 70-летию Валерия Васильевича Козлова

    Tr. Semim. im. I. G. Petrovskogo, 33 (2023),  3–7
  40. Vasilii Vasilievich Zhikov

    Tr. Semim. im. I. G. Petrovskogo, 32 (2019),  5–7
  41. Vladimir Alexandrovich Kondratiev. July 2, 1935 – March 11, 2010

    CMFD, 39 (2011),  5–10
  42. Olga Arsenjevna Oleinik

    Tr. Semim. im. I. G. Petrovskogo, 28 (2011),  5–7
  43. To memory of Vladimir Mikhailovich Millionshchikov

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2010, no. 2,  71–72
  44. Vladimir Alexandrovich Kondratiev on the 70th anniversary of his birth

    Tr. Semim. im. I. G. Petrovskogo, 26 (2007),  5–28
  45. Vladimir Aleksandrovich Kondrat'ev (A Tribute in Honor of His 70th Birthday)

    Differ. Uravn., 41:7 (2005),  867–873
  46. Vladimir Aleksandrovich Kondrat'ev

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2005, no. 5,  77–79


© Steklov Math. Inst. of RAS, 2026